有限分析系数的精确计算与插值算法
Accurate Computation and Interpolation Technique of Finite Analytic Coefficients
-
摘要: 有限分析法是流体计算中一种有效的数值计算方法.但是在解高雷诺数的对流扩散方程时,有限分析系数计算将相当耗时且系数本身将严重失真.本文揭示了上述困难的成因,并提出一种改进算法.首先,建立了一套高精度计算系统,并利用它精确地求出所有基点上被称为“Pe”的函数值.在实际计算中,有限分析系数可通过插值得到的“Pe”值求出.实用算法在保证计算精度的同时,大大提高了有限分析系数的计算速度.Abstract: The finite analytic method (FA) developed in the last decade is an effective numerical method for solving fluid flow problems.However, because of the limitation in the present computer, large round-off errors are found in calculating FA coefficients when Reynolds number is large.This paper investigates the cause of this difficulty and presents a special programming technique in making an accurate computation of FA coefficients.Then a fundamental function known as "Pe" is tabulated by the accurate computation.In practical application the interpolation technique is employed so that the FA coefficients can be obtained reliably and quickly.
-
Key words:
- finite analytic coefficients /
- high Reynolds number /
- accurate computation
-
[1] Chen,C.J,Finite Analytic Method,Chapter 17,Handbook of Numerical Heat Transfer,ed.by W.J.Minkowycz,E.M.Sparror,R.H.Plether and G.E.Schneider,John and Sons,Inc.(1988). [2] 陈景仁,《流体力学及传热学》.国防工业出版让(1984),357-369 [3] 昊江航、韩庆书,《计算流体力学的理论.方法及应用》,第13章,科学出版社(1988)
计量
- 文章访问数: 1704
- HTML全文浏览量: 107
- PDF下载量: 547
- 被引次数: 0