Explicit Square Conserving Schemes of Landau-Lifshitz Equation With Gilbert Component
-
摘要: 构造了一种解具有Gilbert项的Landau-Lifshitz方程的显式平方守恒格式.基本思想是离散Landau-Lifshitz方程成常微分方程组,应用李群方法和显式Runge-Kutta方法解常微分方程组.数值试验比较了两方法的保平方守恒特性和精度,得出李群方法(RK-Cayley方法)比相应的Runge-Kutta(RK)方法有更好的精度和保平方守恒特性.
-
关键词:
- 显式平方守恒格式 /
- 李群方法 /
- RK-Cayley方法 /
- RK方法 /
- Landau-Lifshitz方程
Abstract: A kind of explicit square-conserving scheme is proposed for the Landau-Lifshitz equation with Gilbert component.The basic idea was to semidiscrete the Landau-Lifshitz equation into the ordinary differential equations is skewsymmtery matrix.Then the Lie group method and the Runge-Kutta (RK) method were applied to the ordinary differential equations.The square conserving property and the accuracy of the two methods were compared.Numerical experiment results show the Lie group method has the good accuracy and the square conserving property than the RK method. -
[1] 郭柏灵.自旋波与铁磁链速方程[M].杭州:浙江科学技术出版社,2000. [2] Jason Frank,HUANG Wei-zhang,Benediet Leimkuler.Geometric integration for classical spin system[J].J Comput Phys,1997,133(1):160—172. doi: 10.1006/jcph.1997.5672 [3] 鲁百年,房少梅.铁磁链方程的显式差分解[J].纺织高校基础科学学报,1995,8(3):225—229. [4] ZHOU Yu-lin,GUO Bo-ling.Finite difference solution of the boundary problems for the systems of the ferro-magnetic chain[J].Journal of Comp Mathematics,1983,1(3):294—302. [5] 秦孟兆.铁磁链方程组的两个差分格式[J].计算数学,1984,(4):443—444. [6] Hans Munthe-Kaas.High order Runge-Kutta methods on Manifolds[J].Appl Numer Math,1999,29(1):115—127. doi: 10.1016/S0168-9274(98)00030-0 [7] Arieh Iserles.Numerical analysis in Lie groups[R]. Cambridge CB3 9EW, England,2000.
计量
- 文章访问数: 2769
- HTML全文浏览量: 147
- PDF下载量: 716
- 被引次数: 0