留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种经典时空理论(Ⅰ)——基础

余燊

余燊. 一种经典时空理论(Ⅰ)——基础[J]. 应用数学和力学, 1987, 8(12): 1051-1064.
引用本文: 余燊. 一种经典时空理论(Ⅰ)——基础[J]. 应用数学和力学, 1987, 8(12): 1051-1064.
Yu Xin. A Theory of Classical Spacetime(Ⅰ)——Foundations[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1051-1064.
Citation: Yu Xin. A Theory of Classical Spacetime(Ⅰ)——Foundations[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1051-1064.

一种经典时空理论(Ⅰ)——基础

A Theory of Classical Spacetime(Ⅰ)——Foundations

  • 摘要: 尽管广义相对论形式优美,成果辉煌,但在以下几个方面却未尽完善:(1)它不能容纳不对称的总能量-动量张量,这种不对称性已经在电磁理论中被证明是存在的.(2)场方程可以导出线动量平衡定律,却不能导出角动量平衡定律的精确方程.(3)如果没有附加(非物理)的假设,缩并的第二Bianchi恒等式的四度任意性使场方程无法获得唯一解.为了解决这些问题,我们在本文提出,把纤维丛P[M,SU(2)]定律作为四维时空的基本几何结构.于此,结构群SU(2)是特殊二维复酉群的实表示.SU(2)同时使定义在整个M上的度规型dS2=gαβdxαdxβ和基本二型φ=(1/21)aαβdxα∧dxβ不变.以SU(2)连络定义的爱因斯坦方程利用了时空流形以及把非齐次麦克斯韦方程作为辅助条件.于此,电磁张量与曲率张量的缩并形式是等价的.我们得到的结果是关于16个未知场变量(gαβ,aαβ)的16个独立的基本方程.另外,角动量平衡定律恰好是推广的爱因斯坦方程的斜对称部分.这里,自旋角动量张量直接被证明与扭转张量成比例.
  • [1] Winicour,J.,in General Relativity and Gravitation,A.Held and P.Bergman,eds.,Vol.2,Plenum,N.Y.(1980).
    [2] Cartan,E.,Comptus Rendus,174(1922),593;Ann.Ec.Norm.,40(1923),325.
    [3] Trautman,A.,Bull.Acad.Polon.Sci.,20(1972),185,503.
    [4] Henl,F.W.,et al.,Rev.Mod.Phys.,18(1976),393.
    [5] Bleeker,D.,Gauge Theory and Variational Principles,Addison-Wesley,Mass.(1981).
    [6] Sternberg,S.,Lectures in Differential Geometry,Prentice-Hall,N.J.(1963).
    [7] Kobayashi,S.,Transformation Groups in Differential Geometry,Springer-Verlag,Berlin (1972).
    [8] Hermann,R.,Quantum and Fermion Differential Geometry,Part A,Math.Sci.Press.Brookline,Mass.(1977).
    [9] Kobayashi,S.and K.Nomizu,Foundations of Differential Geometry,Vol.1.Interscience,N.Y.(1963).
    [10] Misner,C.W.,et al.,Gravitation,W.H.Freeman,San Francisco (1973).
    [11] Stephani,H.,General Relativity,Cambridge Univ.Press,Cambridge (1982).
    [12] Hermann,R.,Gauge Fields and Cartan-Ehresmann Connections,Part A,Math.Sci.Press,Brookline,Mass.(1975).
    [13] Frankel,T.,Gravitational Curvature,W.H.Freeman,San Francisco (1979).
    [14] Schouten,J.A.,Ricci Calculus,Springer-Verlag,Berlin (1954).
    [15] De Groot,S.R.,et al,Foundations of Electrodynamics,North-Holland,Amsterdam (1972).
    [16] Heyde,P.von der et al.,Proc.Ist Marcel Grosmann Meeting on G.R.,North-Holland,Amsterdam (1977),255.
    [17] Fock,V.,The Theory of Space,Time and Gravitation,Pergamon,Oxford (1964).
    [18] Weinberg,S.,Gravitation and Cosmology,John Wiley,N.Y.(1972).
    [19] Prassanna,A.R.,Phys.Lett.,54A (1975),17.
    [20] Hawking,S.,et al.The Large Scale Structure of Spacetime,Cambridge University Press,Cambridge (1973).
    [21] Stratton,J.A.,Electromagnetic Theory,McGraw-Hill,N.Y.(1941).
    [22] Einstein,A.,in P.A.Schilpp,Albert-Einstein-Philosopher-Scientist,Library of Living Philosophers(1949).
    [23] Einstein,A.,The Meaning of Relativity,6th ed.,Princeton Univ.Press (1956).
    [24] Buchdanl,H.A.,Proc.Camb.Phil.Soc.,56(1960),396.
    [25] Atkinson,R.d'E,Astro.J,70 (1965),513.
    [26] Atkinson,R.d'E,Proc.Roy.Soc.(Lond.),Series A,272 (1963),60.
    [27] Finlayson,B.A.,Phys.Eluids,15 (1972),963.
    [28] Atnerton,R.W.and G.M.Homsy,Stud Appl.Math.,54(1975),31.
    [29] Sachs,M.,General Relativity and Matter,D.Beidel Dordrecht,Holland(1982).
  • 加载中
计量
  • 文章访问数:  2021
  • HTML全文浏览量:  85
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  1986-08-12
  • 刊出日期:  1987-12-15

目录

    /

    返回文章
    返回