留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性振动系统周期解的数值分析

凌复华

凌复华. 非线性振动系统周期解的数值分析[J]. 应用数学和力学, 1983, 4(4): 489-506.
引用本文: 凌复华. 非线性振动系统周期解的数值分析[J]. 应用数学和力学, 1983, 4(4): 489-506.
Ling. A Numerical Treatment of the Periodic Solutions of Non-Linear Vibration Systems[J]. Applied Mathematics and Mechanics, 1983, 4(4): 489-506.
Citation: Ling. A Numerical Treatment of the Periodic Solutions of Non-Linear Vibration Systems[J]. Applied Mathematics and Mechanics, 1983, 4(4): 489-506.

非线性振动系统周期解的数值分析

A Numerical Treatment of the Periodic Solutions of Non-Linear Vibration Systems

  • 摘要: 用直接数值积分法求非线性振动系统的周期解,求解时对初始条件进行迭代,使它与终点条件相一致.积分时间区间(即周期)或运动方程中的某些参数,也可在迭代过程中随同变化,积分方法是变步长的. 用这种“打靶”法求周期解,所需计算工作量相对较少.其中误差主要来源于数值积分,故不难估计并控制它足够小.这种方法可处理各种类型的振动问题,如单自由度和多自由度系统的自由无阻尼振动、强迫振动、自激振动和参数振动等等;也能求得不稳定解和那些对参数变动十分敏感的解.解的稳定性根据相关的周期系数微分方程来研究.求共振曲线或其他振动特性曲线时,利用插值方法并自动调节步长来定出迭代始值. 为了阐明这种方法的通用性,计算了若干例子.非线性的描述可用解析函数或任何其他形式,例如分段线性函数.文中还就所得周期解指出了非线性振动的一些值得注意的性质.部分计算结果与已有的近似解或实验结果作了比较.
  • [1] Hsu,C.S.,Limit cycle oscillations of parametrically excited second-order nonlinear systems,J.Appl.Mech.,42(1975),176-182.
    [2] Riganti,R.,A Study on the Forced Vibrations of a Class on Nonlinear Sgstems with Application to the Duffing Equation Part II:Numerical Treatment,Mechanica,11(1976),81-88.
    [3] Mayfeh,A.H.and D.T.Mook,Nonlinear Oscillations.John Wiley & Sons,New York-Chichester-Brisbane-Toronto(1979).
    [4] Poincaré,H.,Mémoire sur les courbes définies par une équations différentielles,J.Math.3,Série,7(1881),375-422.
    [5] Hsu,C.S.,Nonlinear Behaviour of Multibody Systems under Impulsive Parametric Excitation,in"Dynamics of Multibody Systems,"Springer,Berlin-Heidelberg-New York(1977).
    [6] Hsu,C.S.,On Nonlinear Parametric Excitation Problems,Adv.Appl.Mech.,17(1977),245-301.
    [7] Urabe,M.,Numerical determination of periodic solution of nonlinear sgstem,J.Sci.Hiroshima Univ.Ser.A,20(1957),125-148.
    [8] Urabe,M.,Infinitesimal deformation of cycles.J.Sci.Hiroshima Univ.Ser.A.18(1954),37-53.
    [9] Urabe,M.,Remarks on periodic solutions of Van der Pol's equation,J.Sci.Hiroshima Univ.Ser.A,24(1960),197-199.
    [10] Urabe,M.,Nonlinear Autonomous Oscillations,Akademic Press,New York-London(1967).
    [11] Ruf.W.-D.,Numerische Lösung des Diffing-Problems.Diplomarbeit,Institut A fur Mechanik,Uni.Stuttgart(1978).
    [12] Ling,F.H(凌复华).,Numerische Bereahung periodischer Lösungen einiger nichtlinearer Schwingungssysteme,Dissertation,Uni.Stuttgart(1981).
    [13] Poincare,H.,Les Méthodesnouvelles de la mecanique céleste Vol.1,Guathiervillars,Paris(1892).
    [14] Ляпунов,А.М.,Обмая Задача об устойчивости Движения,Харвков,(1982),или ОНТИ(1935)
    [15] 马尔金,《非线性振动理论中的李维普诺夫方法与邦加来法》,科学出版社,(1959)
    [16] Малкин,И.Г.,Теорая Устойчивости Движения,Гостехиздат,(1952)
    [17] Kane,T.R.and D.Sobala,A new method for attitude stabilization,AIAA J.,1(1963),1365-1367.
    [18] Stoer,J.and R.Bulirsch,Einführung in die Numerische Mathematik Ⅱ,Springer,Berlin-Heidelberg-New York(1978).
    [19] Fehlberg,E.,Klassische Runge-Kutta Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle,Computing,4(1969),93-106.
    [20] Fehlberg,E.,Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme,Computing,6(1970),61-71.
    [21] Shampine,L.F.and M.K.Gordon,Computer Solution of Ordinary Differential Equations,The initial Value Problem,W.H.Freema and Company,San Francisco(1975).
    [22] Stoker,J.J.,Nonlinear Vibrations in Mechanical and Electrical Systems,Interscience Publishers,New York-London(1950).
    [23] Schrapel,H.D.,Erweiterung eines Satzes von Andronow und Witt,ZAMM 57(1977),T89-T90.
    [24] Moler,C.and C.Van Loan,Nineteen dubious ways to compute the exponential of a matrix,SIAM Rev.,20(1978),801-836.
    [25] Friedmann,P.,C.E.Hammond and T.-H.Woo,Efficient numerical treatment of periodic systems with application to stability problems,Int.J.NUm.Math.Eng.,11(1977),1117-1136.
    [26] Hsu,C.S.,Impulsive parametrix excitation:theory,J.Appl Mech.,39(1972),551-558.
    [27] Hsu,C.S.and W.H.Cheng,Applications of the theory of impulsive parametric excitation and new treatments of general parametrix excitation problems,J.Appl.Mech.,40(1973),78-86.
    [28] Urabe,M.and A.Reiter,Numerical computation of nonlinear forced oscillations by Galerkin's procedure,J.Math.Anal.Appl.14(1966),107-140.
    [29] Rosenberg,R.M.and C.P.Atkinson,On the natural modes and their stability in nonlinear two-degree-of-freedom systems,J.Appl.Mech.,26(1959),377-385.
    [30] Sehtna,P.R.,Steady-state undamped vibrations of a class of nonlinear discrete systems,J.Appl Mech.,27(1960),187-195.
    [31] Van Dooren,R.,Differential tones in a damped mechanical system with quadratic and cubic non-linearities,Int.J.Nonlinear Mech.,8. (1973),575-583.
  • 加载中
计量
  • 文章访问数:  2419
  • HTML全文浏览量:  90
  • PDF下载量:  1247
  • 被引次数: 0
出版历程
  • 收稿日期:  1982-07-28
  • 刊出日期:  1983-08-15

目录

    /

    返回文章
    返回