轴对称弹性体的有限元分析
Finite Element Analysis of Axisymmetric Elastic Body Problems
-
摘要: 轴对称弹性力学问题的有限元分析长期以来都是采用三角圆环有限元和线性形状函数.由于积分困难,常用近似积分求得刚度矩阵,这种近似积分对于靠近旋转对称轴的元素,误差很大,所以,长期以来,被认为不满意的办法.也有用精确积分计算刚度矩阵的.但本文指出,这种积分只适用于有中孔的轴对称体.对于实心的轴对称体而言,这种刚度矩阵都不收敛,计算是无效的.本文提出了一种新的形状函数,当径向座标r接近于零时,这种形状函数的径向位移u自然地接近于零.如果用这种新的形状函数,则由此计算求得的刚度矩阵,不论三角圆环有限元的位置是否靠近轴线.都是存在的.这种有限元,就能用于计算实心的轴对称体的问题.Abstract: Linear form functions are commonly used in a long time for a toroidal volume element swept by a triangle revolved about the symmetrical axis for general axisymmetrical stress problems. It is difficult to obtain the rigidity matrix by exact integration, and instead, the method of approximate integration is used. As the locations of element close to the symmetrical axis, the accuracy of this approximation deteriorates very rapidly. The exact integration have been suggested by various authors for the calculation of rigidity matrix. However, it is shown in this paper that these exact integrations can only be used for those axisymmetric bodies with central hole. For solid axisymmetric body, it can be proved that the calculation fails due to the divergent property of rigidity matrix integration. In this paper a new form function is suggested. In this new form function, the radial displacement u vanishes as radial coordinates r approach to zero. The calculated rigidity matrix is convergent everywhere, including these triangular toroidal element closed to the symmetrical axis. This kind of element is useful for the calculation of axisymmetric elastic solid body problems.
-
[1] Wilson,E.L.,Structural Analysis of Axisymmetric Solids,AIAA Journal,4,(1965),2269. [2] Clough,R.and Rashid,Y.,Finite Element Analysis of Axisymmetric Solids,Proc.ASCE,J.Eng.Mech.,91NoEMI,(1965).71-85. [3] Vitku,S.,Explicit Expressions for Triangular Torus Element Stiffness Matrix,AIAA Journal,6,8(1968),1174-75. [4] Fjeld,S.A.,Three-Dimensional Theory of Elasticity,Finite Element Method in Stress analysis,Edited by I.Holand and K.Bell,TAPIR,(1969).333-368. [5] Pedley,T.J.,The Fluid Mechanics of Largr Blood Vessels,Cabmbrige University Press(1980). [6] Zienjiewicz,0.C.,The Finite Element Method in Engineering Science,McGraw-Hill,London(1971). [7] Desai,C.S.and Abel,J.F.,Introduction to the Finite Element Method,Van Nostrand Reinhold Co.,New York(1972).德赛.C.S,,阿贝尔,J.F.著:《有限元素法引论》,江伯南.尹泽勇译.徐芝纶校,科学出版社(1978). [8] 华东水利学院《弹性力学有限元法》.水利电力出版社(1974) [9] 复旦大学数学系.《有限元法选讲》,科学出版社(1976). [10] Huebner,K.H.,The Finite Element Method for Engineers,John Wiley and Sons,(1975). [11] 郭仲衡.关于有限元法轴对称问题的一点记注.1978年教育部高等学校计算结构力学学术交流会论文集,大连(1978). [12] 郭仲衡:《内燃机活塞热应力计算(轴对称有限元法)》北京大学数力系应用数学73届讲义(1975).
计量
- 文章访问数: 2340
- HTML全文浏览量: 175
- PDF下载量: 986
- 被引次数: 0