留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松弛模型中的液气共存平衡态

王平 唐少强

王平, 唐少强. 松弛模型中的液气共存平衡态[J]. 应用数学和力学, 2005, 26(6): 707-713.
引用本文: 王平, 唐少强. 松弛模型中的液气共存平衡态[J]. 应用数学和力学, 2005, 26(6): 707-713.
WANG Ping, TANG Shao-qiang. Liquid-Gas Coexistence Equilibrium in a Relaxation Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 707-713.
Citation: WANG Ping, TANG Shao-qiang. Liquid-Gas Coexistence Equilibrium in a Relaxation Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 707-713.

松弛模型中的液气共存平衡态

基金项目: 国家重点基础研究专项基金资助项目"非线性科学"(G2000077305);国家自然科学基金资助项目(10002002;90407021)
详细信息
    作者简介:

    王平(1976- ),男,吉林辉南人,讲师,博士(联系人.Tel:+86-411-84707608;E-mail:wangp@dlut.edu.cn);唐少强(Tel/Fax:+86-10-62755410;E-mail:maotang@pku.edu.cn).

  • 中图分类号: O359.1

Liquid-Gas Coexistence Equilibrium in a Relaxation Model

  • 摘要: 对密闭的一维有限长管道里的等温相变,研究了松弛模型中液气共存平衡态的稳定性.使用匹配渐近展开形式上推出了一阶扰动满足的线性系统.理论分析发现,初始小扰动通常会被耗散掉,然而在一些特殊情况下,它们会维持在一定的水平上.数值计算也表明了松弛机制对相变演化具有稳定作用.
  • [1] HSIEH Din-yu,WANG Xiao-ping. Phase transition in Van der Waals fluid[J].SIAM Journal on Applied Mathematics,1997,57(4):871—892. doi: 10.1137/S0036139995295165
    [2] Slemrod M. Dynamic phase transitions in a Van der Waals fluid[J].Differential Equations,1984,52:1—23. doi: 10.1016/0022-0396(84)90130-X
    [3] Zumbrun K. Dynamical[KG*3/4]. stability[KG*3/4]. of[KG*3/4]. phase[KG*3/4]. transitions in the p-system with viscosity-capillarity[J].SIAM Journal on Applied Mathematics,2000,60(6):1913—1924.
    [4] Fife P, WANG Xiao-ping. Periodic structures in a Van der Waals system[J].Pro Roy Soc Edinburgh Sect A,1998,128:235—250. doi: 10.1017/S0308210500012762
    [5] HE Chang-hong,WANG Xiao-ping.Symmetric solutions for a two dimensional Van der Waals system[D].Mphil Thesis. Math Dept HKUST, 1998.
    [6] FAN Hai-tao.Traveling waves, Riemann problems and computations of the dynamics of liquid/vapor phase transitions[J].Differential Equations,1998,150:385—437. doi: 10.1006/jdeq.1998.3491
    [7] CHEN Xin-fu,WANG Xiao-ping.Phase transition near a liquid-gas coexistence equilibrium[J].SIAM Journal on Applied Mathematics,2000,61(2):454—471. doi: 10.1137/S0036139999354285
    [8] JIN Sin, XING Zhou-ping.The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J].Communications on Pure and Applied Mathematics,1995,48(3):1—43.
    [9] Natalini R,TANG Shao-qiang.Discrete kinetic models for dynamical phase transitions[J].Communications on Pure and Applied Analysis,2000,7(2):1—32.
    [10] TANG Shao-qiang,ZHAO Hui-jiang.Stability of suliciu model for phase transitions[J].Communications on Pure and Applied Analysis,2004,3(4):545—556. doi: 10.3934/cpaa.2004.3.545
    [11] TANG Shao-qiang.Patterns in 2-D dynamic phase transitions[A].In:CHIEN Wei-zang Ed.Proceedings of the 4th International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press, 2002, 820—823.
    [12] HSIEH Ding-yu,TANG Shao-qiang,WANG Xiao-ping.On hydrodynamic instabilities, chaos and phase transition[J].Acta Mechanica Sinica,1996,12(1):1—14. doi: 10.1007/BF02486757
  • 加载中
计量
  • 文章访问数:  2717
  • HTML全文浏览量:  126
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-07-08
  • 修回日期:  2004-11-30
  • 刊出日期:  2005-06-15

目录

    /

    返回文章
    返回