Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations
-
摘要: 在有理逼近的紧致格式的理论基础上,采用特别的统一的Padé逼近形式,构造了针对高阶非线性发展方程的、简单小模板的差商格式.不仅保持了格式的四阶精度,而且还可以采用追赶法求解得到的3对角矩阵,或者采用三阶Runge-Kutta法直接求解积分.计算效果通过多种算例表明是十分令人满意的.相对于其他差分格式,此方法具有模板较小而精度保持四阶的优点.Abstract: A set of small-stencil new Pad schemes with the same denominator are presented to solve high-order non-linear evoltuion equations. Using this scheme, the fourth-order precision cannot only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.
-
Key words:
- evolution equation /
- compact scheme /
- Pad scheme /
- node stencil /
- soliton
-
[1] Kahan W,LI Ren-chang.Unconventional schemes for a class of ordinary differential equations with applications to the Korteweg-de Vries equation[J].J Math Phys,1997,134(6):316—331. [2] Gardner L R T,Gardner G A.Solitary waves of regularised long-wave equation[J].J Math Phys,1990,91:441—459. [3] Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16—42. doi: 10.1016/0021-9991(92)90324-R [4] Kobayashi M H.On a class of Pade finite volume methods[J].Journal of Computational Physics,1999,156(1):137—180. doi: 10.1006/jcph.1999.6376 [5] Hixon R.Prefactored small-stencil compact schemes[J]. Journal of Computational Physics,2000,165(2):522—541. doi: 10.1006/jcph.2000.6631 [6] Carpenter M H.Methodology and application to high-order compact schemes[J].Journal of Computational Physics,1994,111:220—236. doi: 10.1006/jcph.1994.1057 [7] Goedheer W J,Potters J H H M.A compact finite scheme on a non-equidistant mesh[J].Journal of Computational Physics,1985,61:269—279. doi: 10.1016/0021-9991(85)90086-5 [8] Ganosa J,Gazdag J.The Korteweq-de Vries-Burgers equation[J].Journal of Computational Physics,1977,23:293—403. [9] 忻孝康,刘儒勋,蒋伯城.计算流体动力学[M].长沙:国防科技大学出版社,1989. [10] 刘儒勋,舒其望.计算流体力学的某些新方法[M].北京:科学出版社,2003.
计量
- 文章访问数: 2732
- HTML全文浏览量: 192
- PDF下载量: 676
- 被引次数: 0