留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

箱约束变分不等式的一个简单光滑价值函数和阻尼牛顿法

乌力吉 陈国庆

乌力吉, 陈国庆. 箱约束变分不等式的一个简单光滑价值函数和阻尼牛顿法[J]. 应用数学和力学, 2005, 26(8): 988-996.
引用本文: 乌力吉, 陈国庆. 箱约束变分不等式的一个简单光滑价值函数和阻尼牛顿法[J]. 应用数学和力学, 2005, 26(8): 988-996.
Ulji, CHEN Guo-qing. New Simple Smooth Merit Function for Box Constrained Variational Inequalities and Damped Newton Type Method[J]. Applied Mathematics and Mechanics, 2005, 26(8): 988-996.
Citation: Ulji, CHEN Guo-qing. New Simple Smooth Merit Function for Box Constrained Variational Inequalities and Damped Newton Type Method[J]. Applied Mathematics and Mechanics, 2005, 26(8): 988-996.

箱约束变分不等式的一个简单光滑价值函数和阻尼牛顿法

基金项目: 高等学校优秀青年教师教学科研奖励计划资助项目(教人司[2002]123号)
详细信息
    作者简介:

    乌力吉(1962- ),男,内蒙古赤峰人,副教授,硕士(联系人.联系地址:内蒙古工业大学理学院数学系,呼和浩特,010062;Tel:+86-471-6575425;Fax:+86-471-6575877;E-mail:Ulji@imut.edu.cn).

  • 中图分类号: O211

New Simple Smooth Merit Function for Box Constrained Variational Inequalities and Damped Newton Type Method

  • 摘要: 通过引入中间值函数的一类光滑价值函数,构造了箱约束变分不等式的一种新的光滑价值函数,该函数形式简单且具有良好的微分性质.基于此给出了求解箱约束变分不等式的一种阻尼牛顿算法,在较弱的条件下,证明了算法的全局收敛性和局部超线性收敛率,以及对线性箱约束变分不等式的有限步收敛性.数值实验结果表明了算法可靠有效的实用性能.
  • [1] Ferris M C,Pang J S.Engineering and economic applications of complementarity problems[J].SIAM Review,1997,39(4):669—713. doi: 10.1137/S0036144595285963
    [2] Facchinei F,Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M].New York,Berlin,Heidelberg:Springer-Verlag,2003.
    [3] Leung A Y T,CHEN Guo-qing,CHEN Wan-ji.Smoothing Newton method for two- and three-dimensional frictional contact problems[J].International Journal for Numerical Methods in Engineering,1998,41(6):1001—1027. doi: 10.1002/(SICI)1097-0207(19980330)41:6<1001::AID-NME319>3.0.CO;2-A
    [4] 修乃华,高自友.互补问题算法的新进展[J].数学进展,1999,28(3):193—210.
    [5] 乌力吉,陈国庆.非线性互补问题的一种新的光滑价值函数及牛顿类算法[J].计算数学,2004,26(3):315—328.
    [6] 陈国庆,曹兵.箱式约束变分不等式的一种新NCP-函数及其广义牛顿法[J].计算数学,2002,24(1):91—104.
    [7] Gabriel S A,More J J.Smoothing of mixed complementarity problems[A].In:Ferris M C,Pang J S Eds.Complementarity and Variational Problems: State of the Art[C].Philadelphia:SIAM,1996,105—116.
    [8] SUN De-feng,Womersley R S.A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Guass-Newton method[J].SIAM J Optim,1999,9(2):388—413. doi: 10.1137/S1052623496314173
    [9] QI Li-qun,SUN De-feng,ZHOU Guang-lu.A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities[J].Math Programming,1999,87(1):1—35.
    [10] Ferris M C,Kanzow C,Munson T S.Feasible descent algorithms for mixed complementarity problems[J].Math Programming,1999,86(3):475—497. doi: 10.1007/s101070050101
    [11] Kanzow C.Strictly feasible equation-based methods for mixed complementarity problems[J].Numer Math,2001,89(1):135—160. doi: 10.1007/PL00005460
    [12] QI Hou-duo.A regularized smoothing Newton method for box constrained variational inequality problems with P0-functions[J].SIAM J Optim,1999,10(2):315—350.
    [13] CHEN Chun-hui,Mangasarian O L.A class of smoothing functions for nonlinear and mixed complementarity problems[J].Computational Optimization and Applications,1996,5(1):97—138. doi: 10.1007/BF00249052
    [14] Fischer A,JIANG Hou-yuan.Merit functions for complementarity and related problems: a survey[J].Computational Optimization and Applications,2000,17(1/2):159—182. doi: 10.1023/A:1026598214921
  • 加载中
计量
  • 文章访问数:  2633
  • HTML全文浏览量:  128
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-12-08
  • 修回日期:  2005-03-10
  • 刊出日期:  2005-08-15

目录

    /

    返回文章
    返回