留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分

P·德乔姆凡 S·封查那帕尼

P·德乔姆凡, S·封查那帕尼. 用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分[J]. 应用数学和力学, 2005, 26(10): 1216-1228.
引用本文: P·德乔姆凡, S·封查那帕尼. 用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分[J]. 应用数学和力学, 2005, 26(10): 1216-1228.
P. Dechaumphai, S. Phongthanapanich. Adaptive Delaunay Triangulation With Multidimensional Dissipation Scheme for High-Speed Compressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1216-1228.
Citation: P. Dechaumphai, S. Phongthanapanich. Adaptive Delaunay Triangulation With Multidimensional Dissipation Scheme for High-Speed Compressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1216-1228.

用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分

基金项目: 泰国研究基金资助项目(TRF);泰国皇家海军(研究基金)资助项目
详细信息
    作者简介:

    P·德乔姆凡,教授,博士(联系人.Tel/Fax:+66-2-218-6621;E-mail:fmepdc@eng.chual.ac.th).

  • 中图分类号: O354.5;O241.82

Adaptive Delaunay Triangulation With Multidimensional Dissipation Scheme for High-Speed Compressible Flow Analysis

  • 摘要: 利用自适应Delaunay三角剖分并结合胞格中心迎风算法,分析非粘滞高速可压缩流体问题.推导了多维耗散格式,并采用非结构化三角网格的迎风算法,改善了激波的计算结果.解精度评价中引入误差估计,在网格重划分算法中,解梯度变化大的区域生成小单元格,解梯度变化小的区域使用大单元格.该格式能进一步推广到高阶时空的解精度分析中.通过稳态和不稳态的高速可压缩流体超音速激波和激波传播特性的分析,可以评估该算法的效率.
  • [1] Anderson J D.Modern Compressible Flow With Historical Prospective[M].2nd edition.New York:McGraw-Hill,1990.
    [2] Donea J.A Taylor-Galerkin method for convective transport problems[J].Internat J Numer Methods in Engng,1984,20(1):101—119. doi: 10.1002/nme.1620200108
    [3] Huges T J R.Recent Progress in the Development and Understanding of SUPG Methods With Special Reference to the Compressible Euler and Navier-Stokes Methods in Fluids[M].New York:John Wiley,1987,1261—1275.
    [4] Jiang B N,Carey G F.A stable last-squares finite element method for non-linear hyperbolic problems[J].Internat J Numer Methods in Fluids,1988,8(9):933—942. doi: 10.1002/fld.1650080805
    [5] Gnoffo P A.Application of program LUARA to three-dimensional AOTV flow fields[R]. AIAA Paper 86-0565,1986.
    [6] Roe P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].J Comput Phys,1981,43(2):357—372. doi: 10.1016/0021-9991(81)90128-5
    [7] Quirk J J.A contribution to the great Riemann solver debate[J].Internat J Numer Methods in Fluids,1994,18(6):555—574. doi: 10.1002/fld.1650180603
    [8] Sanders R,Morano E,Druguet M C.Multidimensional dissipation for upwind schemes:stability and applications to gas dynamics[J].J Comput Phys,1998,145(2):511—537. doi: 10.1006/jcph.1998.6047
    [9] Bowyer A.Computing Dirichlet tessellations[J].Comput J,1981,24(2):162—166. doi: 10.1093/comjnl/24.2.162
    [10] Watson D F.Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes[J].Comput J,1981,24(2):167—172. doi: 10.1093/comjnl/24.2.167
    [11] Weatherill N P,Hassan O.Efficient three-dimension Delaunay triangulation with automatic point creation and imposed boundary constraints[J].Internat J Numer Methods in Engng,1994,37(12):2005—2039. doi: 10.1002/nme.1620371203
    [12] Karamete B K,Tokdemir T,Ger M.Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming[J].Internat J Numer Methods in Engng,1997,40(2):251—268. doi: 10.1002/(SICI)1097-0207(19970130)40:2<251::AID-NME62>3.0.CO;2-U
    [13] Peraire J,Vahdati M,Morgan K,et al.Adaptive remeshing for compressible flow computations[J].J Comput Phys,1987,72(2):449—466. doi: 10.1016/0021-9991(87)90093-3
    [14] Berger M J,Colella P.Local adaptive mesh refinement for shock hydrodynamics[J].J Comput Phys,1989,82(1):67—84.
    [15] Jin H,Wiberg N E.Two-dimensional mesh generation,adaptive remeshing and refinement[J].Internat J Numer Methods in Engng,1990,29(7):1501—1526. doi: 10.1002/nme.1620290709
    [16] Probert J,Hassan O,Jeraire J,et al.An adaptive finite element method for transient compressible flows[J].Internat J Numer Methods in Engng,1991,32(5):1145—1159. doi: 10.1002/nme.1620320514
    [17] Dechaumphai P,Morgan K.Transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement[A].In:Thornton E A Ed.Thermal Structures and Materials for High-Speed Flight[C].Washington D C:American Institute of Aeronautics and Astronautics,1992,205—228.
    [18] Quirk J J,Hanebutte U R.A parallel adaptive mesh refinement algorithm[R]. ICASE Report 93-63,1993.
    [19] Venkatakrishnan V.A perspective on unstructured grid flow solvers[R]. AIAA paper 95-0667,1995.
    [20] Sun M,Takayama K.Conservative smoothing on an adaptive quadrilateral grid[J].J Comput Phys,1999,150(1):143—180. doi: 10.1006/jcph.1998.6167
    [21] Hirsch C.Numerical Computation of Internal and External Flows[M].Vol 2.New York:John Wiley & Sons,1998.
    [22] Shyue K M.An efficient shock-capturing algorithm for compressible multicomponent problems[J].J Comput Phys,1998,142(1):208—242. doi: 10.1006/jcph.1998.5930
    [23] Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49(3):357—393. doi: 10.1016/0021-9991(83)90136-5
    [24] Frink N T,Parikh P,Pirzadeh S.A fast upwind solver for the Euler equations on three-dimensional unstructured meshes[R]. AIAA Paper-91-0102;In:29th Aerospace Sciences Meeting and Exhibit[C].Reno,Navada,1991.
    [25] Frink N T,Pirzadeh S Z.Tetrahedral finite-volume solutions to the Navier-Stokes equations on comlex configurations[R]. NASA/TM-1998-208961,1998.
    [26] Vekatakrishnan V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J].J Comput Phys,1995,118(1):120—130. doi: 10.1006/jcph.1995.1084
    [27] Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].J Comput Phys,1988,77(2):439—471. doi: 10.1016/0021-9991(88)90177-5
    [28] Linde T,Roe P L.Robust Eluer codes[R]. AIAA Paper-97-2098;In:13th Compuations Fluid Dynamics Conference[C].Snowmass Village,CO,1997.
    [29] Joe B,Simpson R B.Triangular meshes for regions of complicated shape[J].Internat J Numer Methods in Engng,1986,23(5):751—778. doi: 10.1002/nme.1620230503
    [30] Frey W H.Selective refinement:a new strategy for automatic node placement in graded triangular meshes[J].Internat J Numer Methods in Engng,1987,24(11):2183—2200. doi: 10.1002/nme.1620241111
    [31] Sun M,Takayama K.Error localization in solution-adaptive grid methods[J].J Comput Phys,2003,190(1):346—350. doi: 10.1016/S0021-9991(03)00278-X
    [32] Sod G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].J Comput Phys,1978,27(1):1—31. doi: 10.1016/0021-9991(78)90023-2
  • 加载中
计量
  • 文章访问数:  2557
  • HTML全文浏览量:  182
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-10
  • 刊出日期:  2005-10-15

目录

    /

    返回文章
    返回