Lagrangian Mechanics on K hler Manifolds
-
摘要: 讨论了Khler流形上的Lagrange力学,并给出Lagrange算子、Lagrange方程、作用泛函、Hamilton原理和Hamilton方程等复的数学形式.
-
关键词:
- Khler流形 /
- 绝对微分 /
- Lagrange算子 /
- Hamilton原理
Abstract: Lagrangian mechanics on K hler manifolds were discussed, and the complex mathe matical aspects of Lagrangian operator, Lagrange's equation, the action functional, Hamilton's principle and Hamilton's equation, and so on were given.-
Key words:
- K hler manifold /
- absolute differential /
- Lagrangian operator /
- Hamilton’s principle
-
[1] 甘特马赫尔[WT5”BZ]. Ф Р.分析力学[M].钟奉俄,薛问西 译.北京:人民教育出版社,1963,1—163. [2] Arnold V I.Mathematical Methods of Classical Mechanics[M].New York:Springer-Verlag,1978,1—300. [3] Arnold V I.Mathematical Aspect of Classical and Celestial Mechanics.Encyclopaedia of Mathematical Sciences,Vol 3.Dynamical Systems3[M].New York:Springer-Verlag,1985,1—48. [4] Curtis W D,Miller F R.Differential Manifolds and Theoretical Physics[M].Orlando,Florida:Academic Press Inc,1985,1—191. [5] Dubrorin B A,Fomenko A T,Novikov S P.Modern Geometry—Methods and Application.PartsⅠ,Ⅱ[M].New York:Springer-Verlag,New York Inc,1984,1—374,1—357. [6] von Westenholz C.Differential Forms in Mathematical Physics[M].Amsterdam,New York,Oxford:North-Holland Publishing Company,1978,335—439. [7] 张荣业.关于Khler流形上的牛顿力学[J].应用数学和力学,1996,17(8):709—720.
计量
- 文章访问数: 2858
- HTML全文浏览量: 142
- PDF下载量: 656
- 被引次数: 0