留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维非线性对流扩散方程特征有限元的两重网络算法

秦新强 马逸尘 章胤

秦新强, 马逸尘, 章胤. 二维非线性对流扩散方程特征有限元的两重网络算法[J]. 应用数学和力学, 2005, 26(11): 1365-1372.
引用本文: 秦新强, 马逸尘, 章胤. 二维非线性对流扩散方程特征有限元的两重网络算法[J]. 应用数学和力学, 2005, 26(11): 1365-1372.
QIN Xin-qiang, MA Yi-chen, ZHANG Yin. Two-Grid Method for Characteristics Finite-Element Solution of 2D Nonlinear Convection-Dominated Diffusion Problem[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1365-1372.
Citation: QIN Xin-qiang, MA Yi-chen, ZHANG Yin. Two-Grid Method for Characteristics Finite-Element Solution of 2D Nonlinear Convection-Dominated Diffusion Problem[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1365-1372.

二维非线性对流扩散方程特征有限元的两重网络算法

基金项目: 国家自然科学基金资助项目(NSF10371069);陕西省教育厅专项科研计划资助项目(02JK048)
详细信息
    作者简介:

    秦新强(1962- ),男,陕西人,教授,博士(联系人.Tel:+86-29-82066354;Fax:+86-29-82066351;E-mail:xqqin@xaut.edu.cn).

  • 中图分类号: O241.82

Two-Grid Method for Characteristics Finite-Element Solution of 2D Nonlinear Convection-Dominated Diffusion Problem

  • 摘要: 针对二维非线性对流扩散方程,构造了特征有限元两重网格算法.该算法只需要在粗网格上进行非线性迭代运算,而在所需要求解的细网格上进行一次线性运算即可.对于非线性对流占优扩散方程,不仅可以消除因对流占优项引起的数值振荡现象,还可以加快收敛速度、提高计算效率.误差估计表明只要选取粗细网格步长满足一定的关系式,就可以使两重网格解与有限元解保持同样的计算精度.算例显示:两重网格算法比特征有限元算法的收敛速度明显加快.
  • [1] Douglas J Jr, Russell T F. Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element or finite difference procedures[J].SIAM Journal on Numerical Analysis,1982,19(5):871—885. doi: 10.1137/0719063
    [2] Russell T F.Time stepping along characteristcs with incomplete iteration for a Galerkin approximation of miscible displacement in porous media[J].SIAM Journal on Numerical Analysis,1985,22(5):970—1013. doi: 10.1137/0722059
    [3] XU Jin-chao.A novel two-grid method for semilinear elliptic equations[J].SIAM Journal on scientific Computing,1994,15(1):231—237. doi: 10.1137/0915016
    [4] XU Jin-chao.Two grid finite element discretization techniques for linear and nonlinear PDEs[J].SIAM Journal on Numerical Analysis,1996,33(5):1759—1777. doi: 10.1137/S0036142992232949
    [5] Dawson C N, Wheeler M F.Two-grid methods for mixed finite element approximations of nonlinear parabolic equations[J].Contemporary Mathematics,1994,180:191—203. doi: 10.1090/conm/180/01971
    [6] LI Wu, Myron B Allen III.Two-grid methods for mixed finite-element solutions of reaction-diffusion equations[J].Numerical Methods for Partial Differential Equations,1999,15(5):589—604. doi: 10.1002/(SICI)1098-2426(199909)15:5<589::AID-NUM6>3.0.CO;2-W
    [7] Layton W,Tobiska L.A two-level method with backtracking for the Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,1998,35(5):2035—2051. doi: 10.1137/S003614299630230X
    [8] Mheeleer M F.A prori L2 error estimates for Galerkin approximations to parabolic partial differential equations[J].SIAM Journal on Numerical Analysis,1973,10(4):723—759. doi: 10.1137/0710062
  • 加载中
计量
  • 文章访问数:  2540
  • HTML全文浏览量:  131
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-07-08
  • 修回日期:  2005-07-19
  • 刊出日期:  2005-11-15

目录

    /

    返回文章
    返回