留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用边界元法模拟纤维增强复合材料平面弹性问题

孔凡忠 郑小平 姚振汉

孔凡忠, 郑小平, 姚振汉. 应用边界元法模拟纤维增强复合材料平面弹性问题[J]. 应用数学和力学, 2005, 26(11): 1373-1379.
引用本文: 孔凡忠, 郑小平, 姚振汉. 应用边界元法模拟纤维增强复合材料平面弹性问题[J]. 应用数学和力学, 2005, 26(11): 1373-1379.
KONG Fan-zhong, ZHENG Xiao-ping, YAO Zhen-han. Numerical Simulation of 2D Fiber-Reinforced Composites Using Boundary Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1373-1379.
Citation: KONG Fan-zhong, ZHENG Xiao-ping, YAO Zhen-han. Numerical Simulation of 2D Fiber-Reinforced Composites Using Boundary Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1373-1379.

应用边界元法模拟纤维增强复合材料平面弹性问题

基金项目: 国家自然科学基金资助项目(10172053,10472051)
详细信息
    作者简介:

    孔凡忠(1972- ),山东曲阜人,博士(E-mail:kongfanzhong@mail.tsinghua.org.cn);郑小平(联系人.Tel:+86-10-62796187;E-mail:zhengxp@mail.tsinghua.edu.cn);姚振汉(1939- ),教授(E-mail:demyzh@mail.tsinghua.edu.cn).

  • 中图分类号: 130.15

Numerical Simulation of 2D Fiber-Reinforced Composites Using Boundary Element Method

  • 摘要: 将含有随机分布多种夹杂相复合材料的二维弹性力学问题归结为复连通区域的边界积分方程,进而转化成矩阵方程进行求解和分析.根据同类夹杂相外在边界上的面力与位移之间关系矩阵完全相同的特点,使得最后的矩阵方程阶数得到大规模减少,这正是此处提出改进的边界元方法的主要思路.数值算例表明,对于此类问题,与常规的边界元分域解法相比更加有效.以该方法为基础,可以详细给出纤维增强复合材料二维条件下的宏观等效力学性质.
  • [1] Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion and related problems[J].Proc Royal Soc London A,1957,241(1226):376—396. doi: 10.1098/rspa.1957.0133
    [2] Hashin Z.The elastic moduli of heterogeneous materials[J].J Appl Mech,1962,29(1):143—150. doi: 10.1115/1.3636446
    [3] Budiansky Y.On the elastic moduli of heterogeneous materials[J].J Mech Phys Solids,1965,13(4):223—227. doi: 10.1016/0022-5096(65)90011-6
    [4] Hill R.A Self-consistent mechanics of composite materials[J].J Mech Phys Solids,1965,13(4):213—222. doi: 10.1016/0022-5096(65)90010-4
    [5] Christensen R M,Lo K H.Solutions for effective shear properties in three phase sphere and cylinder models[J].J Mech Phys Solids,1979,27(4):315—330. doi: 10.1016/0022-5096(79)90032-2
    [6] Aboudi J, Benveniste Y.The effective moduli of cracked bodies in plane deformation[J].Engng Fracture Mech,1987,26(2):171—84. doi: 10.1016/0013-7944(87)90195-0
    [7] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with mis-fitting inclusions[J].Acta Metall,1973,21(4):571—583. doi: 10.1016/0001-6160(73)90064-3
    [8] Isida M, Igawa H.Analysis of zig-zag array of circular holes in an infinite solid under uniaxial tension[J].Int J Solids Struc,1991,27(7):849—864. doi: 10.1016/0020-7683(91)90020-G
    [9] Day A R,Snyder K A,Garboczi E J,et al.The elastic moduli of a sheet containing circular holes[J].J Mech Phys Solids,1992,40(5):1031—1051. doi: 10.1016/0022-5096(92)90061-6
    [10] HU Ning,WANG Bo,TAN Guo-wen,et al.Effective elastic properties of 2-D solids with circular holes: numerical simulations[J].Composites Science and Technology,2000,60(9):1811—1823. doi: 10.1016/S0266-3538(00)00054-3
    [11] KONG Fan-zhong,YAO Zhen-han,ZHENG Xiao-ping.BEM for simulation of a 2D elastic body with randomly distributed circular inclusions[J].Acta Mechanica Solida Sinica,2002,15(1):81—88.
  • 加载中
计量
  • 文章访问数:  4177
  • HTML全文浏览量:  147
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-08-25
  • 修回日期:  2005-07-29
  • 刊出日期:  2005-11-15

目录

    /

    返回文章
    返回