Eigenfrequency Analysis of Cable Structures With Inclined Cables
-
摘要: 计算了带斜拉索的索结构在面内振动的近似特征频率,该索结构的不同位置还带有质点.发现经典传递矩阵法已不足以解决此问题,因此采用较大的外矩阵来确定特征频率方程.然后在对外矩阵渐近估计的基础上,确定一般索结构的动力学性能.Abstract: The approximate eigenfrequencies for the in_plane vibrations of a cable structure consisting of inclined cables,together with point masses at various points were computed.It was discovered that the classical transfer matrix method was inadequate for this task,and hence the larger exterior matrices to determine the eigenfequency equation were used.Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matries were made.
-
Key words:
- eigenfrequency /
- transfer matrice /
- exterior matrice /
- cable structure
-
[1] Irvine H M.Cable Structures[M].Cambridge:M I T Press,1981. [2] Simpson A.Determination of the inplane natural frequencies of multispan transmission lines by a transfer-matrix method[J].Proc IEEE,1966,113(5):870—878. [3] Triantafyllou M S.The dynamics of taut inclined cable[J].Quart J Mech Appl Math,1984,37(3):421—440. doi: 10.1093/qjmam/37.3.421 [4] Abramowitz M,Stegun I.Handbook of Mathematical Functions[M].New York:Dover,1981. [5] Bender C M,Orszag S A.Advanced Mathematical Methods for Scientists and Engineers[M].New York:Springer-Verlag,1999. [6] Grinfogel L.Dynamics of elastic taut inclined cables[Z]. thesis presented to the Massachusetts Institute of Technoloy,at Cambridge M A,in partial fulfillment of the requirements for the degree of Master of Science,1984. [7] Paulsen W H.Eigenfrequencies of the non-collinearly coupled Euler-Bernoulli beam system with dissipative joints[J].Quarterly of Applied Mathematics,1997,55(3):437—457. [8] Krantz S G,Paulsen W H.Asymptotic eigenfrequency distributions for the N-beam Euler-Bernoulli coupled beam equation with dissipative joints[J].J Symbolic Computaion,1991,11:369—418. doi: 10.1016/S0747-7171(08)80111-3 [9] Triantafyllou M S,Grinfogel L.Natural frequencies and modes of inclined cables[J].J Struct Engrg,1986,112(1):139—148. doi: 10.1061/(ASCE)0733-9445(1986)112:1(139) [10] Boothby W.An Introduction to Differentiable Manifolds and Riemannian Geometry[M].Orlando,Florida:Academic Press Inc,1986. [11] Irvine H M,Caughey T K.The linear theory of free vibrations of a suspended cable[J].Proc R Soc Lond,1974,341:299—315. doi: 10.1098/rspa.1974.0189
计量
- 文章访问数: 2968
- HTML全文浏览量: 163
- PDF下载量: 485
- 被引次数: 0