留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

描述低周疲劳裂纹扩展速率的循环J积分新参量

胡宏玖 郭兴明 李培宁 谢禹钧 李洁

胡宏玖, 郭兴明, 李培宁, 谢禹钧, 李洁. 描述低周疲劳裂纹扩展速率的循环J积分新参量[J]. 应用数学和力学, 2006, 27(2): 134-143.
引用本文: 胡宏玖, 郭兴明, 李培宁, 谢禹钧, 李洁. 描述低周疲劳裂纹扩展速率的循环J积分新参量[J]. 应用数学和力学, 2006, 27(2): 134-143.
HU Hong-jiu, GUO Xing-ming, LI Pei-ning, XIE Yu-jun, LI Jie. New Cyclic J-Integral for Low-Cycle Fatigue Crack Growth[J]. Applied Mathematics and Mechanics, 2006, 27(2): 134-143.
Citation: HU Hong-jiu, GUO Xing-ming, LI Pei-ning, XIE Yu-jun, LI Jie. New Cyclic J-Integral for Low-Cycle Fatigue Crack Growth[J]. Applied Mathematics and Mechanics, 2006, 27(2): 134-143.

描述低周疲劳裂纹扩展速率的循环J积分新参量

基金项目: 上海市重点学科建设资助项目(Y0103)
详细信息
    作者简介:

    胡宏玖(1969- ),男,江西赣州人,副研究员,博士(联系人.Tel/Fax:+86-21-56338345;E-mail:huhongjiu@163.com).

  • 中图分类号: O346.2

New Cyclic J-Integral for Low-Cycle Fatigue Crack Growth

  • 摘要: 探讨了低周疲劳加载条件下的应力增量-应变增量关系,提出了模拟裂纹疲劳扩展的二维模型以建立新的循环J积分参量,详细阐述了该积分参量的定义、主要特点、物理意义以及数值计算方法,并通过紧凑拉伸试样的疲劳试验检验该积分参量的有效性.结果表明:该积分参量能够较好描述恒幅低周疲劳裂纹的扩展速率.此外,基于积分参量体系,从能量的角度解释了疲劳迟滞现象.
  • [1] Paris P C,Erdogan F.A critical analysis of crack propagation laws[J].J Basic Eng,1960,85:528—534.
    [2] Dowling N E,Begley J A.Fatigue crack growth during gross plasticity and the J-integral[J].ASTM STP,1976,590:82—103.
    [3] Tanaka K.The cyclic J-integral as a criterion for fatigue crack growth[J].Internat J Fracture,1983,22(2):91—104. doi: 10.1007/BF00942715
    [4] Tanaka K,Akiniwa Y,Shimizu K.Propagation and closure of small cracks in SiC particulate reinforced aluminum alloy in high cycle and low cycle fatigue[J].Eng Fract Mech,1996,55(5):751—762. doi: 10.1016/0013-7944(96)00009-4
    [5] Wuthrich C.The extension of theJ-integral applied to fatigue cracking[J].Internat J Fracture,1982,20(2):R35—R37.
    [6] Chow C L,Lu T J.CyclicJ-integral in relation to fatigue crack initiation and propagation[J].Eng Fract Mech,1991,39(1):1—20. doi: 10.1016/0013-7944(91)90018-V
    [7] Brose W R,Dowling N E.Size effects on the fatigue crack growth rate of type 304 stainless steel[J].ASTM STP,1979,668:720—735.
    [8] Matthias Weick, Jarir Aktaa. Microcrack propagation and fatigue lifetime under non-proportional multiaxial cyclic loading[J].Internat J Fatigue,2003,25(9/11):1117—1124. doi: 10.1016/S0142-1123(03)00117-8
    [9] HU Hong-jiu,LEI Yue-bao,LI Pei-ning. Engineering method for calculation of cyclic J-integral[J].J Mech Strength,1998,20(4):257—260.
    [10] Miura N,Fujioka T,Kashima K.Evaluation of low-cycle fatigue crack growth and subsequent ductile fracture for cracked pipe experiments using cyclic J-integral[J].J Press Vess-T ASME,1996,323(1):249—256.
    [11] Skallerud B,Zhang Z L.On numerical analysis of damage evolution in cyclic elastic-plastic crack growth problems[J].Fatigue Fract Eng M Struct,2001,24(1):81—86. doi: 10.1046/j.1460-2695.2001.00353.x
    [12] CHEN Xue-dong,YANG Tie-cheng,JIANG Jia-ling,et al.An experimental research on the strain fatigue crack propagation in high-strain region of pressure vessels[J].J Exp Mech,2003,18(4):520—528.
    [13] Rice J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks[J].J Appl Mech,1968,35:379—386. doi: 10.1115/1.3601206
    [14] Owen D R J,Fawkes A J.Engineering Fracture Mechanics: Numerical Methods and Applications[M].Swansea: Pineridge Press Limited, 1983.
    [15] Kumar V,German M D,Shih C F.An Engineering Approach for Elastic-Plastic Fracture Analysis[M].Palo Alto,CA:Electric Power Research Institute,1981.
    [16] 雷月葆.应变疲劳扩展与应力疲劳扩展的统一规律[D].上海:华东理工大学,1993.
    [17] Anderson T L.Fracture Mechanics: Fundamental and Application[M].Boston: CRC Press, 2000.
  • 加载中
计量
  • 文章访问数:  2785
  • HTML全文浏览量:  121
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-08-23
  • 修回日期:  2005-10-17
  • 刊出日期:  2006-02-15

目录

    /

    返回文章
    返回