Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams
-
摘要: 利用拟线性分析方法中的一阶导数代换对基本方程进行了简化处理,将基本的微分积分方程转化为非线性代数方程组,并结合双参数摄动研究了悬臂梁的大挠度问题.与已有的研究结果比较表明: 将拟线性方法用于研究悬臂梁的大挠度问题,计算较为简便, 同时又具有良好的精度.Abstract: The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach.This kind of substitution can transform the basic equation,an integral differential equation into a nonlinear algebraic ones thus simplify computational process.Compared with the present results,it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.
-
Key words:
- cantilever beam /
- large deflection /
- pseudolinear /
- biparametric perturbation
-
[1] 钱伟长.宁波甬江大桥的大挠度非线性计算问题[J].应用数学和力学,2002,23(5):441—451. [2] Fertis D G.Nonlinear Mechanics[M].US: CRC Press LLC, 1999. [3] 何晓婷,陈山林.悬臂梁大挠度问题的摄动解[J].重庆建筑大学学报,2003,25(6):46—51. [4] Nayfeh A H.Introduction to Perturbation Techniques[M].US: John Wiley & Sons, 1981. [5] Nayfeh A H.Problems in Perturbation[M].US: John Wiley & Sons,1985. [6] Fertis D G,Afonta A O.Equivalent systems for large deformation of beams of any stiffness variation[J].Eur J Mech A/Solid,1991,10(3):265. [7] Frisch-Fay R.Flexible Bars[M].Washington,D C:Butterworth,1962. [8] Gere J M,Timoshenko S P.Mechanics of Materials[M].3rd Ed.Boston:PWS-Kent,1990,514.
计量
- 文章访问数: 2918
- HTML全文浏览量: 124
- PDF下载量: 607
- 被引次数: 0