留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类带有非线性传染率的SEIS传染病模型的定性分析

王拉娣 李建全

王拉娣, 李建全. 一类带有非线性传染率的SEIS传染病模型的定性分析[J]. 应用数学和力学, 2006, 27(5): 591-596.
引用本文: 王拉娣, 李建全. 一类带有非线性传染率的SEIS传染病模型的定性分析[J]. 应用数学和力学, 2006, 27(5): 591-596.
WANG La-di, LI Jian-quan. Qualitative Analysis of an SEIS Epidemic Model With Nonlinear Incidence Rate[J]. Applied Mathematics and Mechanics, 2006, 27(5): 591-596.
Citation: WANG La-di, LI Jian-quan. Qualitative Analysis of an SEIS Epidemic Model With Nonlinear Incidence Rate[J]. Applied Mathematics and Mechanics, 2006, 27(5): 591-596.

一类带有非线性传染率的SEIS传染病模型的定性分析

基金项目: 国家科技攻关计划资助项目(2004BA719A01)
详细信息
    作者简介:

    王拉娣(1958- ),女,河北井陉人,教授,博士(Tel:+86-351-7666702;E-mail:wld58@126.com);李建全(1965- ),男,山西万荣人,教授,博士(联系人.Tel:+86-29-84786546;E-mail:jianq_li@263.net).

  • 中图分类号: O175.12

Qualitative Analysis of an SEIS Epidemic Model With Nonlinear Incidence Rate

  • 摘要: 借助极限理论和Fonda定理,研究了一类既有常数输入率又有因病死亡率的SEIS传染病模型.所考虑模型的传染率是非线性的,并且得到了该模型的基本再生数,当基本再生数小于1时,该模型仅存在唯一的无病平衡点,它是全局渐近稳定的,且疾病最终灭绝.当基本再生数大于1时,该模型除存在不稳定的无病平衡点外,还存在唯一的局部渐近稳定的地方病平衡点,并且疾病一致持续存在.
  • [1] Wang W,Ma Z.Global dynamics of an epidemic model with delay[J].Nonlinear Analysis: Real World Applications,2002,3:809—834.
    [2] Wang W.Global behavior of an SEIRS epidemic model time delays[J].Applied Mathematics Letters,2002,15(2):423—428. doi: 10.1016/S0893-9659(01)00153-7
    [3] Thieme R H.Persistence under relaxed point-dissipativity (with applications to an endemic model)[J].SIAM Journal of Mathematical Analysis,1993,24(2):407—435. doi: 10.1137/0524026
    [4] Hethcote H W.The mathematics of infectious diseases[J].SIAM Review,2000,42(3):599—653. doi: 10.1137/S0036144500371907
    [5] Li J,Ma Z.Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J].Mathematical and Computer Modelling,2002,20(5):1235—1243.
    [6] Capasso V,Serrio G.A generalization of the Kermack-Mckendrick deterministic epidemic model[J].Mathematical Biosicences,1978,42(2):327—346.
    [7] Liu W M,Hethcote H W,Levin S A.Dynamical behavior of epidemiological model with nonlinear incidence rates[J].Journal of Mathematical Biology,1987,25(2):359—380. doi: 10.1007/BF00277162
    [8] Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23(1):187—204. doi: 10.1007/BF00276956
    [9] Ruan S, Wang W.Dynamical behavior of an epidemic model with a nonlinear incidence rate[J].Journal of Differential Equations,2003,188(1):135—163. doi: 10.1016/S0022-0396(02)00089-X
    [10] Derrick W R,van den Driessche P. A disease transmission model in a nonconstant population[J].Journal of Mathematical Biology,1993,31(3):495—512.
    [11] Fonda A.Uniformly persistent semidynamical systems[J].Proceedings of American Mathematical Society,1988,104(1):111—116. doi: 10.1090/S0002-9939-1988-0958053-2
  • 加载中
计量
  • 文章访问数:  3054
  • HTML全文浏览量:  137
  • PDF下载量:  1000
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-07-31
  • 修回日期:  2006-02-10
  • 刊出日期:  2006-05-15

目录

    /

    返回文章
    返回