Unified Computation of Flow With Compressible and Incompressible Fluid Based on Roe’s Scheme
-
摘要: 以Navier-Stokes方程为基础,基于有限体积的时间推进的预处理技术,提出了一个可以用来求解可压与不可压流场的统一的计算方法.原始变量选用压力、速度与温度,通过矩阵变换与重构,使得对流项系数矩阵在可压与不可压条件下都不会奇异,将可压与不可压流场的计算方法统一起来.采用Roe格式计算对流通量,采用中心差分格式计算扩散通量.算例表明,该方法可以进行高Mach数、中等Mach数、低Mach数及不可压流场的计算.由于采用了Roe格式,该方法还可以捕获不连续流场的间断面.Abstract: A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm.The primitive variables were pressure,velocities and temperature.The time integration scheme was used in conjunction with a finite volume discretization.The preconditioning was coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix.Computational capabilities are demonstrated through computations of high Mach number,middle Mach number,very low Mach number,and incompressible flow.It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.
-
Key words:
- flow field /
- preconditioning /
- compressible fluid /
- incompressible fluid
-
[1] Turkel E. Preconditioned method for solving the incompressible and low speed compressible equations[J].Journal of Computational Physics,1987,72(2):277—298. doi: 10.1016/0021-9991(87)90084-2 [2] Guillard Herve, Viozat Cecile. On the behaviour of upwind schemes in the low Mach number limit[J].Computer & Fluids,1999,28(1):63—86. [3] Storti M, Nigro N, Idelsohn S. Steady state incompressible flows using explicit schemes with an optimal local preconditioning[J].Computer Methods in Applied Mechanics and Engineering,1995,124(3):231—252. doi: 10.1016/0045-7825(95)00787-2 [4] Weiss Jonathan M, Smith Wayne A. Preconditioning applied to variable and constant density flow[J].AIAA J,1995,33(11):2050—2057. doi: 10.2514/3.12946 [5] Merkle Charles L, Sullivan Jennifer Y,Buelow Philip E O,et al.Computation of flow with arbitrary equations of state[J].AIAA J,1998,36(4):515—521. doi: 10.2514/2.424 [6] Choi Y H, Merkle C L. The application of preconditioning in viscous flows[J].Journal of Computational Physics,1993,105(2):207—223. doi: 10.1006/jcph.1993.1069 [7] Edwards Jack R, Franklin Randall K, Liou Meng-Sing.Low-diffusion flux-splitting methods for real fluid flows with phase transitions[J].AIAA J,2000,38(9):1624—1633. doi: 10.2514/2.1145 [8] Roe P L. Approximate Riemann solvers, parameter vector, and difference schemes[J].Journal of Computational Physics,1981,43(2):357—372. doi: 10.1016/0021-9991(81)90128-5 [9] Rouse H, McNown J S.Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw[M].Studies in Engineering Bulletin 32.Iowa: State University of Iowa,1948. [10] Bogar T, Sajben M, Kroutil J. Characteristic frequencies of transonic diffuser flow oscillations[J].AIAA J,1983,21(9):1232—1240. doi: 10.2514/3.8234
计量
- 文章访问数: 2584
- HTML全文浏览量: 120
- PDF下载量: 1243
- 被引次数: 0