留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构可靠性分析的支持向量机方法

李洪双 吕震宙 岳珠峰

李洪双, 吕震宙, 岳珠峰. 结构可靠性分析的支持向量机方法[J]. 应用数学和力学, 2006, 27(10): 1135-1143.
引用本文: 李洪双, 吕震宙, 岳珠峰. 结构可靠性分析的支持向量机方法[J]. 应用数学和力学, 2006, 27(10): 1135-1143.
LI Hong-shuang, LÜ Zhen-zhou, YUE Zhu-feng. Support Vector Machine for Structural Reliability Analysis[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1135-1143.
Citation: LI Hong-shuang, LÜ Zhen-zhou, YUE Zhu-feng. Support Vector Machine for Structural Reliability Analysis[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1135-1143.

结构可靠性分析的支持向量机方法

基金项目: 国家自然科学基金资助项目(10572117);航天基金资助项目(N3CH0502,N5CH0001);新世纪优秀人才支持计划(NCET-05-0868)
详细信息
    作者简介:

    李洪双(1978- ),男,黑龙江巴彦人,博士研究生,主要从事结构可靠性研究;吕震宙(1966- ),女,湖北黄石人,教授,博士生导师,主要从事飞行器结构可靠性工程研究(联系人.Tel/Fax:+86-29-88460480;E-mail:zhenzhoulu@nwpu.edu.cn).

  • 中图分类号: TB114.3

Support Vector Machine for Structural Reliability Analysis

  • 摘要: 针对结构可靠性分析中功能函数不能显式表达的问题,将支持向量机方法引入到结构可靠性分析中.支持向量机是一种实现了结构风险最小化原则的分类技术,它具有出色的小样本学习性能和良好的泛化性能,因此提出了两种基于支持向量机的结构可靠性分析方法.与传统的响应面法和神经网络法相比,支持向量机可靠性分析方法的显著特点是在小样本下高精度地逼近函数,并且可以避免维数灾难.算例结果也充分表明支持向量机方法可以在抽样范围内很好地逼近真实的功能函数,减少隐式功能函数分析(通常是有限元分析)的次数,具有一定的工程实用价值.
  • [1] Gomes H M,Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J].Structural Safety,2004,26(1):49—67. doi: 10.1016/S0167-4730(03)00022-5
    [2] Schueremans L, Gemert D V. Benefit of splines and neural networks in simulation based structural reliability analysis[J].Structural Safety,2005,27(3):246—261. doi: 10.1016/j.strusafe.2004.11.001
    [3] Rackwitz R. Reliability analysis—a review and some perspectives[J].Structural Safety,2001,23(4):365—395. doi: 10.1016/S0167-4730(02)00009-7
    [4] Nowak A R,Collins K R.Reliability of Structures[M].Boston:McGraw-Hill, 2000.
    [5] Zhao Y G, Ono T.A general procedure for first/second-order reliability method (FORM/SORM)[J].Structural Safety,1999,21(2):95—112. doi: 10.1016/S0167-4730(99)00008-9
    [6] Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[J].Structural Safety,2004,26(3):271—293. doi: 10.1016/j.strusafe.2003.05.002
    [7] Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57—66. doi: 10.1016/0167-4730(90)90012-E
    [8] Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability analysis[J].Structural Safety,1993,12(3):205—220. doi: 10.1016/0167-4730(93)90003-J
    [9] Kim S,Na S.Response surface method using vector projected sampling points[J].Structural Safety,1997,19(1):3—19. doi: 10.1016/S0167-4730(96)00037-9
    [10] Guan X L, Melchers R E. Effect of response surface parameter variation on structural reliability estimates[J].Structural Safety,2001,23(4):429—444. doi: 10.1016/S0167-4730(02)00013-9
    [11] Hurtado J E, Alvarez D A. Neural-network-based reliability analysis: a comparative study[J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113—132. doi: 10.1016/S0045-7825(01)00248-1
    [12] Papadrakakis M, Lagaros N D.Reliability-based structural optimization using neural networks and Monte Carlo simulation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(32):3491—3507. doi: 10.1016/S0045-7825(02)00287-6
    [13] Deng J, Gu D S,Li X B,et al.Structural reliability analysis for implicit performance functions using artificial neural network[J].Structural Safety,2005,27(1):25—48. doi: 10.1016/j.strusafe.2004.03.004
    [14] Cortes C, Vapnik V N.Support vector networks[J].Machine Learning,1995,20(3):273—297.
    [15] Vapnik V N. An overview of statistical learning theory[J].IEEE Transaction on Neural Networks,1999,10(5):988—998. doi: 10.1109/72.788640
    [16] Vapnik V N.The Nature of Statistical Learning Theory[M].New York: Springer-Verlag, 1995.
    [17] 邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京: 科学出版社,2004.
    [18] Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J].Reliability Engineering and System Safety,2002,76(3):237—243. doi: 10.1016/S0951-8320(02)00015-7
    [19] Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite~element modeling[J].Journal of Structural Engineering,2003,129(8):1141—1149. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141)
  • 加载中
计量
  • 文章访问数:  2562
  • HTML全文浏览量:  161
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-26
  • 修回日期:  2006-07-09
  • 刊出日期:  2006-10-15

目录

    /

    返回文章
    返回