留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

养老基金投资组合的常方差弹性(CEV)模型和解析决策

肖建武 尹少华 秦成林

肖建武, 尹少华, 秦成林. 养老基金投资组合的常方差弹性(CEV)模型和解析决策[J]. 应用数学和力学, 2006, 27(11): 1312-1318.
引用本文: 肖建武, 尹少华, 秦成林. 养老基金投资组合的常方差弹性(CEV)模型和解析决策[J]. 应用数学和力学, 2006, 27(11): 1312-1318.
XIAO Jian-wu, YIN Shao-hua, QIN Cheng-lin. Constant Elasticity of Variance (CEV) Model and Analytical Strategies for Annuity Contracts[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1312-1318.
Citation: XIAO Jian-wu, YIN Shao-hua, QIN Cheng-lin. Constant Elasticity of Variance (CEV) Model and Analytical Strategies for Annuity Contracts[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1312-1318.

养老基金投资组合的常方差弹性(CEV)模型和解析决策

详细信息
    作者简介:

    肖建武(1973- ),男,湖南人,副教授,博士(联系人.E-mail:xiaojw@126.com).

  • 中图分类号: F224.11

Constant Elasticity of Variance (CEV) Model and Analytical Strategies for Annuity Contracts

  • 摘要: 针对以年金形式发放待遇的缴费预定制养老基金,在退休前和退休后的两个阶段,分别构建了常方差弹性(CEV)模型,并应用Legendre变换将原问题转化为对偶问题,在追求指数效用最大化的条件下,求得了精确解析解,从而确定了这两个阶段的最优投资决策.
  • [1] Boulier J F,Huang S J,Taillard G.Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund[J].Insurance: Mathematics and Economics,2001,28(2):173—189. doi: 10.1016/S0167-6687(00)00073-1
    [2] Devolder P,Princep P M,Fabian D I.Stochastic optimal control of annuity contracts[J].Insurance: Mathematics and Economics,2003,33(2):227—238. doi: 10.1016/S0167-6687(03)00136-7
    [3] Cox J C.The Constant elasticity of variance option pricing model[J].The Jounrnal of Portfolio Management,1996,22(1):16—17.
    [4] Cox J C,Ross S A.The valuation of options for alternative stochastic processes[J].Journal of Financial Economics,1976,4(1/2):145—166.
    [5] Beckers S.The Constant elasticity of variance model and its implications for option pricing[J].The Journal of Finance,1980,5(3):661—673.
    [6] Emanuel D,Macbeth J.Further results on the constant elasticity of variance call option pricing model[J].Journal of Financial and Quantitative Analysis,1982,17(4):53—54.
    [7] Davydov D,Linetsky V.The valuation and hedging of barrier and lookback option under the CEV process[J].Management Science,2001,47(7):949—965. doi: 10.1287/mnsc.47.7.949.9804
    [8] Basu P,Samanta P.Volatility and stock prices:implications from a production model of asset pricing[J].Economics Letters,2001,70(2):229—235. doi: 10.1016/S0165-1765(00)00365-7
    [9] Kramkov D,Schachermayer W. The asymptotic elasticity of utility function and optimal investment in incomplete markets[J].Ann Appl Probab,1999,9(3):904—950. doi: 10.1214/aoap/1029962818
    [10] Choulli T,Hurd T R.The role of Hellinger processes in mathematical finance[J].Entropy,2001,3(3):150—161. doi: 10.3390/e3030150
    [11] Jonsson M,Sircar R. Optimal investment problems and volatility homogenization approximations[A].In:Modern Methods in Scientific Computing and Applications[C].NATO Science Series Ⅱ.Germany:Springer,2002,75:255—281.
    [12] 肖建武,秦成林.养老基金管理的常方差弹性模型及Legendre变换——对偶解法[J].系统工程理论与实践,2005,25(9):49—53.
    [13] Cox J C,Huang C F.A variational problem arising in financial economics[J].Math Econ,1991,20(5):465—487. doi: 10.1016/0304-4068(91)90004-D
  • 加载中
计量
  • 文章访问数:  2640
  • HTML全文浏览量:  147
  • PDF下载量:  1061
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-06-13
  • 修回日期:  2006-08-03
  • 刊出日期:  2006-11-15

目录

    /

    返回文章
    返回