留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有变时滞和脉冲效应的Hopfield神经网络的全局指数稳定性

杨志春 徐道义

杨志春, 徐道义. 具有变时滞和脉冲效应的Hopfield神经网络的全局指数稳定性[J]. 应用数学和力学, 2006, 27(11): 1329-1334.
引用本文: 杨志春, 徐道义. 具有变时滞和脉冲效应的Hopfield神经网络的全局指数稳定性[J]. 应用数学和力学, 2006, 27(11): 1329-1334.
YANG Zhi-chun, XU Dao-yi. Global Exponential Stability of Hopfield Neural Networks With Variable Delays and Impulsive Effects[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1329-1334.
Citation: YANG Zhi-chun, XU Dao-yi. Global Exponential Stability of Hopfield Neural Networks With Variable Delays and Impulsive Effects[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1329-1334.

具有变时滞和脉冲效应的Hopfield神经网络的全局指数稳定性

基金项目: 国家自然科学基金资助项目(10371083)
详细信息
    作者简介:

    杨志春(1971- ),男,重庆人,副教授,博士(联系人.E-mail:zhichy@yahoo.com.cn);徐道义(1948- ),男,四川人,教授,博士生导师.

  • 中图分类号: O175;TP711

Global Exponential Stability of Hopfield Neural Networks With Variable Delays and Impulsive Effects

  • 摘要: 讨论了一类具有变时滞和脉冲效应的Hopfield神经网络模型.利用按段连续的向量Liapunov思想方法,研究了脉冲时滞神经网络的全局指数稳定性.例子及其数值仿真说明了结果的有效性.推广和改进了已有文献的一些结果.
  • [1] Marcus C M,Westervelt R M.Stability of analog neural networks with delay[J].Phys Rev A,1989,39(1):347—359. doi: 10.1103/PhysRevA.39.347
    [2] Panas A I,Yang T,Chua L O.Experimental results of impulsive synchronization between two Chua's circuits[J].Internat J Bifurcation Chaos Appl Sci Eng,1998,8(3):639—644. doi: 10.1142/S0218127498000437
    [3] 刘斌,刘新芝,廖晓昕.脉冲Hopfield神经网络的鲁棒H-稳定性及其脉冲控制器设计[J].控制理论与应用,2003,20(2):169—172.
    [4] Akca H,Alassar R,Covachev V,et al.Continuous-time additive Hopfield-type neural networks with impulses[J].J Math Anal Appl,2004,290(2):436—451. doi: 10.1016/j.jmaa.2003.10.005
    [5] YANG Zhi-chun,XU Dao-yi.Stability analysis of delay neural networks with impulsive effects[J].IEEE Transactions on Circuits and Systems Ⅱ,2005,52(8):517—521. doi: 10.1109/TCSII.2005.849032
    [6] GUAN Zhi-hong,CHEN Guan-rong.On delayed impulsive Hopfield neural networks[J].Neural Networks,1999,12(2):273—280. doi: 10.1016/S0893-6080(98)00133-6
    [7] Driessche P V D, Zou X F.Global attractivity in delayed Hopfield neural network models[J].SIAM J Appl Math,1998,58(16):1878—1890. doi: 10.1137/S0036139997321219
    [8] 曹进德,李继彬.具有交互神经传递的神经网络的稳定性[J].应用数学和力学,1998,19(5):425—430.
    [9] Mohamad S.Global exponential stability of continuous-time and discrete-time delayed bidi rectional neural networks[J].Phys D,2001,159(3):233—251. doi: 10.1016/S0167-2789(01)00344-X
    [10] XU Dao-yi,ZHAO Hong-yong,ZHU Hong. Global dynamics of Hopfield neural networks involving variable delays[J].Computers and Mathematics With Applications,2001,42(1):39—45. doi: 10.1016/S0898-1221(01)00128-6
    [11] WANG Lin-shan,XU Dao-yi.Stability for Hopfield neural networks with time delays[J].Journal of Vibration and Control,2002,8(1):13—18. doi: 10.1177/1077546302008001527
    [12] 王林山,徐道义.Hopfield型时滞神经网络的稳定性分析[J].应用数学和力学,2002,23(1):59—64.
    [13] GUO Shang-jiang,HUANG Li-hong.Stability analysis of a delayed Hopfield neural network[J].Phys Rev E,2003,67(6):1—7.
    [14] 廖晓昕.论Hopfield神经网络中物理参数的数学内蕴[J].中国科学,E辑,2003,33(2):127—136.
    [15] Lakshmikantham V,Bainov D D, Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore: World Scientific,1989.
    [16] 廖晓昕.动力系统的稳定性理论和应用[M].北京: 国防工业出版社,2001,9—14.
  • 加载中
计量
  • 文章访问数:  2971
  • HTML全文浏览量:  153
  • PDF下载量:  645
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-10-30
  • 修回日期:  2006-07-26
  • 刊出日期:  2006-11-15

目录

    /

    返回文章
    返回