留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐和与随机噪声联合作用下Duffing振子的双峰稳态密度

戎海武 王向东 孟光 徐伟 方同

戎海武, 王向东, 孟光, 徐伟, 方同. 谐和与随机噪声联合作用下Duffing振子的双峰稳态密度[J]. 应用数学和力学, 2006, 27(11): 1373-1379.
引用本文: 戎海武, 王向东, 孟光, 徐伟, 方同. 谐和与随机噪声联合作用下Duffing振子的双峰稳态密度[J]. 应用数学和力学, 2006, 27(11): 1373-1379.
RONG Hai-wu, WANG Xiang-dong, MENG Guang, XU Wei, FANG Tong. On Double Peak Probability Density Functions of a Duffing Oscillator to Combined Deterministic and Random Excitations[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1373-1379.
Citation: RONG Hai-wu, WANG Xiang-dong, MENG Guang, XU Wei, FANG Tong. On Double Peak Probability Density Functions of a Duffing Oscillator to Combined Deterministic and Random Excitations[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1373-1379.

谐和与随机噪声联合作用下Duffing振子的双峰稳态密度

基金项目: 国家自然科学基金(重点)资助项目(10332030);广东省自然科学基金资助项目(04011640)
详细信息
    作者简介:

    戎海武(1966- ),男,浙江宁波人,教授(联系人.Tel:+86-757-82988684;E-mail:ronghw@foshan.net).

  • 中图分类号: O324

On Double Peak Probability Density Functions of a Duffing Oscillator to Combined Deterministic and Random Excitations

  • 摘要: 研究Duffing振子在谐和与随机噪声联合作用下系统响应的双峰稳态概率密度问题.用多尺度法分离了系统的快变项,得到了系统慢变项满足的随机微分方程.用线性化方法求出了双峰稳态概率密度的表达式.数值模拟表明提出的方法是有效的.
  • [1] ZHU Wei-qiu,Lu M Q,Wu Q T. Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation[J].Journal of Sound and Vibration,1993,165(2):285—304. doi: 10.1006/jsvi.1993.1258
    [2] HUANG Zhi-long,ZHU Wei-qiu. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white-noise excitations[J].Journal of Sound and Vibrations,2000,238(2):233—256. doi: 10.1006/jsvi.2000.3083
    [3] Wagner U V. On double crater-like probability density functions of a Duffing oscillator subjected to harmonic and stochastic excitations[J].Nonlinear Dynamics,2002,28(3):243—255. doi: 10.1023/A:1015620928121
    [4] Nayfeh Ali H.Perturbation Methods[M]. New York: Wiley, 1973.
    [5] Nayfeh Ali H.Introduction to Perturbation Techniques[M].New York: Wiley, 1981.
    [6] Rajan S, Davies H G. Multiple time scaling of the response of a Duffing oscillator to narrow-band excitations[J].Journal of Sound and Vibration,1988,123(3):497—506. doi: 10.1016/S0022-460X(88)80165-2
    [7] Nayfeh Ali H, Serhan S J. Response statistics of nonlinear systems to combined deterministic and random excitations[J].International Journal of Nonlinear Mechanics,1990,25(5):493—509. doi: 10.1016/0020-7462(90)90014-Z
    [8] RONG Hai-wu,XU Wei,FANG Tong.Principal response of Duffing oscillator to combined deterministic and narrow-band random parametric excitation[J].Journal of Sound and Vibration,1998,210(4):483—515. doi: 10.1006/jsvi.1997.1325
    [9] RONG Hai-wu,XU Wei,WANG Xiang-dong,et al.Response statistics of two-degree-of-freedom nonlinear system to narrow-band random excitation[J].International Journal of Non-Linear Mechanics,2002,37(6):1017—1028. doi: 10.1016/S0020-7462(01)00024-5
    [10] 朱位秋.随机振动[M].北京:科学出版社,1992.
  • 加载中
计量
  • 文章访问数:  2761
  • HTML全文浏览量:  129
  • PDF下载量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-03
  • 修回日期:  2006-08-07
  • 刊出日期:  2006-11-15

目录

    /

    返回文章
    返回