留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用集结坐标法对细杆中呼吸子状态的分析

赵广慧 张年梅 杨桂通

赵广慧, 张年梅, 杨桂通. 用集结坐标法对细杆中呼吸子状态的分析[J]. 应用数学和力学, 2006, 27(12): 1397-1404.
引用本文: 赵广慧, 张年梅, 杨桂通. 用集结坐标法对细杆中呼吸子状态的分析[J]. 应用数学和力学, 2006, 27(12): 1397-1404.
ZHAO Guang-hui, ZHANG Nian-mei, YANG Gui-tong. Analysis of Breather State in Thin Bar by Using Collective Coordinate[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1397-1404.
Citation: ZHAO Guang-hui, ZHANG Nian-mei, YANG Gui-tong. Analysis of Breather State in Thin Bar by Using Collective Coordinate[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1397-1404.

用集结坐标法对细杆中呼吸子状态的分析

基金项目: 国家自然科学基金资助项目(10172063;10672112);山西省青年科学基金资助项目(20051004);山西省高等学校青年学术带头人基金资助项目
详细信息
    作者简介:

    赵广慧(1971- ),女,河北人,博士(联系人.Tel:+86-351-6010560;Fax:+86-351-6041646;E-mail:wy_zgh@yahoo.com.cn);张年梅(1965- ),女,江西人,教授,博士,从事非线性动力学研究(E-mail:nianmeizhang@ya-hoo.com).

  • 中图分类号: O347.4

Analysis of Breather State in Thin Bar by Using Collective Coordinate

  • 摘要: 研究了计入Peierls-Nabarro(P-N)力和材料粘性效应的一维无限长金属杆在简谐外力扰动下的动力响应,导出了类sine-Gordon 型的运动方程.在集结坐标(collective coordinate)下原控制方程可以用常微分动力系统描述,研究系统中呼吸子的运动.根据非线性动力学方法分析,P-N力的幅值和频率的变化将改变双曲鞍点的位置,并改变系统次谐分叉的阈值,但不改变由奇阶次谐分叉通向混沌的路径.通过实例给出了P-N力幅值和P-N力频率对细杆动力响应的详细影响过程,可见混沌发生的区域是一个半无限区域,并随着P-N力的增大而增大.P-N力的频率对系统有类似的影响.
  • [1] 赵广慧,张年梅,杨桂通.考虑耗散效应的金属杆受扰动后的非线性动力学现象分析[J].应用数学和力学,2005,26(2):130—136.
    [2] Kivshar Y S,Malomed B A.Dynamics of solitons in nearly integrable systems[J].Rev Mod Phys,1989,61:763—916. doi: 10.1103/RevModPhys.61.763
    [3] Quintero N R, Sánchez A. DC motion of ac driven SG solitons[J].Physics Letters A,1998,247:161—166. doi: 10.1016/S0375-9601(98)00554-4
    [4] Forinash K, Willis C R.Nonlinear response of the SG breather to an ac driver[J].Physica D,2001,149:95—106. doi: 10.1016/S0167-2789(00)00194-9
    [5] Laurent Nana, Timoléon C Kofané, Ernest Kaptouom. Subharmonic and homoclinic bifurcations in the driven and damped SG system[J].Physica D,1999,134:61—74. doi: 10.1016/S0167-2789(98)00312-1
    [6] Matsuda T.A variational analysis of the collision of solitary solutions[J].Lett Nuovo Cimento,1979,24(7):207—212. doi: 10.1007/BF02733908
    [7] Meyers M A,Chawla K K.Mechanical Metallurgy[M].New Jersey:Prentice Hall, Inc,1984.
    [8] SHU Xue-feng,YANG Gui-tong.The influence of material properties on dynamic behavior of structures[A].In:Senoo M,Ed.Proceedings of IMMM'97[C].Kamihama:Mie University Press,1997,279—284.
    [9] Bishop A B, Lomdahl P S.Nonlinear dynamics in driven, damped sine-Gordon systems[J].Physica D,1986,18:54—66. doi: 10.1016/0167-2789(86)90162-4
    [10] Cicogna G.A theoretical prediction of the threshold for chaos in a Josephson junction[J].Physics Letters A,1987,121(8/9):403—406. doi: 10.1016/0375-9601(87)90486-5
    [11] ZHANG Nian-mei,YANG Gui-tong.Solitary waves and chaos in nonlinear visco-elastic rod[J].European Journal of Mechanics A/Solids,2003,22(6):917—923. doi: 10.1016/S0997-7538(03)00072-X
  • 加载中
计量
  • 文章访问数:  2933
  • HTML全文浏览量:  165
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-05-20
  • 修回日期:  2006-07-19
  • 刊出日期:  2006-12-15

目录

    /

    返回文章
    返回