Exact Linearization Based Multiple-Subspace Iterative Resolution to Affine Nonlinear Control System
-
摘要: 研究仿射非线性控制系统的最优控制问题.基于微分几何理论,在反馈精确线性化后,利用计算结构力学与最优控制之间模拟关系,沿用多重子结构法来解决线性化后的最优控制问题,最终实现对原非线性系统的求解.相比于经典的Taylor展开线性化方法,减小了误差会随使用区域的扩大而扩大的弊端.Abstract: To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control, multiple-substructure method was induced to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.
-
Key words:
- affine nonlinear system /
- precise linearization /
- multiple-substructure /
- optimal control
-
[1] 钟万勰,欧阳华江,邓子辰. 计算结构力学与最优控制[M].大连:大连理工大学出版社,1993. [2] 史小平,许天舒.两类不确定非线性系统的最优控制[J].电机与控制学报,2000,4(4):223—226. [3] Cheng D,Tarn T J,Isidori A.Global external linearization of nonlinear system via feedback[J].IEEE Transactions on Automatic Control,1985,39(8):808—811. [4] 周雪松,马幼捷.非线性控制理论几何结构原理的基本概念[J].青岛大学学报,1997,12(1):23—28. [5] DENG Zi-chen.The optimal solution of the constrained nonlinear control system[J].Computers & Structures,1994,53(5):1115—1121. [6] 邓子辰.混合能消元法在受约束非线性控制系统中的应用[J].工程力学,1994,11(1):124—132. [7] 邓子辰.多重子结构法在非线性控制系统中的应用[J].力学学报,1994,24(2):239—246. [8] 钟万勰.代数黎卡提方程的求解与辛子空间迭代法[J].上海力学,1994,15(2):1—11. [9] 冯纯伯.非线性控制系统分析与设计[M].北京:电子工业出版社, 2001.
计量
- 文章访问数: 2856
- HTML全文浏览量: 155
- PDF下载量: 1000
- 被引次数: 0