留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用截面变形耦合有限元法分析复合材料梁

姜文光 J·L·亨帅

姜文光, J·L·亨帅. 用截面变形耦合有限元法分析复合材料梁[J]. 应用数学和力学, 2006, 27(12): 1497-1505.
引用本文: 姜文光, J·L·亨帅. 用截面变形耦合有限元法分析复合材料梁[J]. 应用数学和力学, 2006, 27(12): 1497-1505.
JIANG Wen-guang, John L. Henshall. Analysis of Composite Laminate Beams Using Coupling Cross-Section Finite Element Method[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1497-1505.
Citation: JIANG Wen-guang, John L. Henshall. Analysis of Composite Laminate Beams Using Coupling Cross-Section Finite Element Method[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1497-1505.

用截面变形耦合有限元法分析复合材料梁

详细信息
    作者简介:

    姜文光(1966- ),男,黑龙江人,教授,研究员,博士(联系人.E-mail:W.jiang@bristol.ac.uk;wenguang_jiang@yahoo.co.uk).

  • 中图分类号: O343.68

Analysis of Composite Laminate Beams Using Coupling Cross-Section Finite Element Method

  • 摘要: 复合材料板和梁具有优良的特性, 从而获得了广泛的应用.然而由于材料的各向异性, 使得对这类材料构件作变形和应力分析时,即使应用如有限元法的数值分析手段仍是非常复杂费时的.为此提出了一个可应用常规有限单元法,分析等截面复合材料梁承受均匀拉弯扭载荷的一个简单精确分析的实施方法.由于巧妙地利用了变形的对称特性,使得分析只需建立在梁的一个切片构造的几何模型上,用常规三维实体有限单元进行结构离散.推导了精确的变形场模式,并借助结构平移自由度的耦合关系使得数值分析易于实施.并通过数值算例来阐明方法的实施过程.
  • [1] Pipes R B, Pagano N J.Interlaminar stresses in composite laminates under uniform axial extension[J].Journal of Composite Materials,1970,4:538—548.
    [2] Altus E, Rotem A,Shmueli M. Free edge effect in angle ply laminates—A new three dimensional finite difference solution[J].Journal of Composite Materials,1980,14(1):21—30.
    [3] Davì G, Milazzo A.Boundary integral formulation for composite laminates in torsion[J].AIAA J,1997,35(10):1660—1666. doi: 10.2514/2.6
    [4] Ye L. Some characteristics of distributions of free-edge interlaminar stresses in composite laminates[J].International Journal of Solids and Structures,1990,26(3):331—351. doi: 10.1016/0020-7683(90)90044-V
    [5] Mitchell J A, Reddy J N.Study of interlaminar stresses in composite laminates subjected to torsional loading[J].AIAA J,2001,39(7):1374—1382. doi: 10.2514/2.1456
    [6] Wang S S,Choi I.Boundary-layer effects in composite laminates,Part 2:Free-edge stress solutions and basic characteristics[J].ASME Journal of Applied Mechanics,1982,49(3):549—560. doi: 10.1115/1.3162521
    [7] Pagano N J. Stress fields in composite laminates[J].International Journal of Solids and Structures,1978,14(5):385—400. doi: 10.1016/0020-7683(78)90020-3
    [8] Pagano N J.Free edge stress fields in composite laminates[J].International Journal of Solids and Structures,1978,14(5):401—406. doi: 10.1016/0020-7683(78)90021-5
    [9] Yin W L. Free-edge effects in anisotropic laminates under extension, bending and twisting,Part Ⅰ: a stress-function-based variational approach[J].ASME Journal of Applied Mechanics,1994,61(2):410—415. doi: 10.1115/1.2901459
    [10] Jiang W G.The development of the helically symmetric boundary condition in finite element analysis and its applications to spiral strands[D].PhD thesis.Uxbridge:Brunel University,1999.
    [11] Jiang W G, Henshall J L.The development and applications of the helically symmetric boundary conditions in finite element analysis[J].Communications in Numerical Methods in Engineering,1999,15(6):435—443. doi: 10.1002/(SICI)1099-0887(199906/07)15:6<435::AID-CNM257>3.0.CO;2-W
    [12] Jiang W G, Henshall J L.A novel finite element model for helical springs[J].Finite Elements in Analysis and Design,2000,35(4):363—377. doi: 10.1016/S0168-874X(99)00076-1
    [13] Jiang W G, Henshall J L.Torsion-extension coupling in initially twisted beams by finite elements[J].European Journal of Mechanics A-Solids,2001,20(3):501—508. doi: 10.1016/S0997-7538(00)01131-1
    [14] Jiang W G,Henshall J L,Walton J M.A concise finite element model for 3-layered straight wire rope strand[J].International Journal of Mechanical Sciences,2000,42(1):63—86. doi: 10.1016/S0020-7403(98)00111-8
    [15] Jiang W G, Yao M S,Walton J M. A concise finite element model for simple wire rope strand[J].International Journal of Mechanical Sciences,1999,41(2):143—161. doi: 10.1016/S0020-7403(98)00039-3
    [16] Jiang W G, Henshall J L.A coupling cross-section finite element model for torsion analysis of prismatic bars[J].European Journal of Mechanics A-Solids,2002,21(3):513—522. doi: 10.1016/S0997-7538(02)01209-3
    [17] Lekhnitskii S G.Theory of Elasticity of an Anisotropic Elastic Body[M].Holden-Day,Inc, 1963.
  • 加载中
计量
  • 文章访问数:  2998
  • HTML全文浏览量:  184
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-07-07
  • 修回日期:  2006-08-08
  • 刊出日期:  2006-12-15

目录

    /

    返回文章
    返回