留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用Adomian分解法求解分数阻尼梁的解析解

梁祖峰 唐晓艳

梁祖峰, 唐晓艳. 用Adomian分解法求解分数阻尼梁的解析解[J]. 应用数学和力学, 2007, 28(2): 200-208.
引用本文: 梁祖峰, 唐晓艳. 用Adomian分解法求解分数阻尼梁的解析解[J]. 应用数学和力学, 2007, 28(2): 200-208.
LIANG Zu-feng, TANG Xiao-yan. Analytical Solution of a Fractionally Damped Beam by Using Adomian Decomposition Method[J]. Applied Mathematics and Mechanics, 2007, 28(2): 200-208.
Citation: LIANG Zu-feng, TANG Xiao-yan. Analytical Solution of a Fractionally Damped Beam by Using Adomian Decomposition Method[J]. Applied Mathematics and Mechanics, 2007, 28(2): 200-208.

用Adomian分解法求解分数阻尼梁的解析解

基金项目: 国家自然科学基金资助项目(10547124;10475055)
详细信息
    作者简介:

    梁祖峰(1971- ),男,博士(联系人.E-mail:liangzufeng@163.com).

  • 中图分类号: O326

Analytical Solution of a Fractionally Damped Beam by Using Adomian Decomposition Method

  • 摘要: 利用Adomian分解法, 得到了由任意阶分数微分描述的具有阻尼特性的黏弹性连续梁的解析解.解中包含了任意的初始条件和零输入.为了更明确的分析, 假定初始条件是奇次的,输入受力是针对某种特定梁的特殊过程.分别考虑了两种简单情况下梁的响应:阶跃激励和脉冲激励.然后在系统的不同组参数条件下绘制了梁的位移图,并且讨论了梁在不同微分阶数下响应情况.
  • [1] Deng R,Davies P,Bajaj A K.A case study on the use of fractional derivatives: the low-frequency viscoelastic uni-directional behavior of polyurethane foam[J].Nonlinear Dynamics,2004,38(1/4):247-265. doi: 10.1007/s11071-004-3759-3
    [2] Rossikhin Y A,Shitikova M V.Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders[J].The Shock and Vibration Digest,2004,36(1):3-26. doi: 10.1177/0583102404039131
    [3] Agrawal O P.Analytical solution for stochastic response of a fractionally damped beam[J].ASME J Vibr Acoust,2004,126(4):561-566. doi: 10.1115/1.1805003
    [4] Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Press,1974.
    [5] Podlubny I.Fractional Differential Equations[M].San Diego:Academic Press,1999.
    [6] Suarez L E,Shokooh A.Response of systems with damping materials modeled using fractional calculus[J].ASME J Appl Mech Rev,1995,48(11):118-127. doi: 10.1115/1.3005059
    [7] Samko G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives: Theory and Applications[M].Yverdon:Gordon & Breach,1993.
    [8] Kemple S,Beyer H.Global and causal solutions of fractional differential equations[A].In:Transform Methods and Special Functions: Varna96, Proceedings of 2nd International Workshop[C].Singapore:Science Culture Technology Publishing,1997,210-216.
    [9] Kilbas A A, Pierantozzi T,Trujillo J J,et al.On the solution of fractional evolution equations[J].J Phys A: Math Gen,2004,37(9):3271-3283. doi: 10.1088/0305-4470/37/9/015
    [10] Luchko Y, Srivastava H M.The exact solution of certain differential equations of fractional order by using operational calculus [J].Comput Math Appl,1995,29(8):73-85.
    [11] Adomian G.A new approach to nonlinear partial differential equations[J].J Math Anal Appl,1984,102(2):420-434. doi: 10.1016/0022-247X(84)90182-3
    [12] Adomian G.Solving Frontier Problems of Physics: The Decomposition Method[M].Boston:Kluwer Academic Publishers,1994.
    [13] Wazwaz A M.Exact solutions for variable coefficients fourth-order parabolic partial differential equations in higher-dimensional spaces[J].Appl Math Comput,2002,130(2/3):415-424. doi: 10.1016/S0096-3003(01)00109-6
    [14] Momani S, AlKhaled K. Numerical solutions for systems of fractional differential equations by the decomposition method[J].Appl Math Comput,2005,162(3):1351-1365. doi: 10.1016/j.amc.2004.03.014
    [15] Vadasz P, Olek S. Convergence and accuracy of Adomian's decomposition method for the solution of Lorenz equations[J].Internat J Heat Mass Transfer,2000,43(10):1715-1734. doi: 10.1016/S0017-9310(99)00260-4
    [16] Chen W H, Lu Z Y.An algorithm for Adomian decompostion method[J].Appl Math Comput,2004,159(1):221-235. doi: 10.1016/j.amc.2003.10.037
    [17] Chen Q S, Suki B, An K N.Dynamic mechanical properties of agarose gels modeled by a fractional derivative model[J].ASME J Biomech Eng,2004,126(5):666-671. doi: 10.1115/1.1797991
    [18] Saha Ray S, Poddar B P,Bera R K.Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[J].ASME J Appl Mech,2005,72(2):290-295. doi: 10.1115/1.1839184
    [19] Saha Ray S, Bera R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J].Appl Math Comput,2005,168(1):398-410. doi: 10.1016/j.amc.2004.09.006
    [20] Daftardar-Gejji V, Jafari H.Adomian decomposition: a tool for solving a system of fractional differential equations[J].J Math Anal Appl,2005,301(2):508-518. doi: 10.1016/j.jmaa.2004.07.039
    [21] Shawagfeh N T. The decomposition method for fractional differential equations[J].J Frac Calc,1999,16:27-33.
  • 加载中
计量
  • 文章访问数:  2779
  • HTML全文浏览量:  104
  • PDF下载量:  708
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-13
  • 修回日期:  2006-10-24
  • 刊出日期:  2007-02-15

目录

    /

    返回文章
    返回