Unconventional Hamilton-Type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-Net Structures
-
摘要: 根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了正交索网结构几何非线性弹性动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值-边值问题的全部特征.文中首先给出正交索网结构几何非线性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到正交索网结构几何非线性动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出正交索网结构几何非线性弹性动力学的5类变量、4类变量、3类变量和2类变量非传统Hamilton型变分原理的互补泛函、以及相空间非传统Hamilton型变分原理的泛函与1类变量非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.Abstract: According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures can be established systematically. The unconventional Hamilton-type variational principle can fully characterize the initia-l boundary-value problem of this dynamics. An important integral relation was given, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
-
[1] 沈世钊.悬索结构设计[M].北京:建筑工业出版社,2006. [2] 金问鲁.悬挂结构计算理论[M].杭州:浙江科学技术出版社,1981. [3] 罗恩,姜凤华.非线性弹性动力学Hamilton型变分原理的革新[J].中山大学学报(自然科学版),2004,43(6):52-56. [4] Ni Y Q,Ko J M,Zheng G.Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity[J].Journal of Sound and Vibration,2002,257(4):301-319. doi: 10.1006/jsvi.2002.5060 [5] Warnitchai P,Fujino Y,Susumpow T.A Non-linear dynamic model for cables and Its application to a cable-structures system[J].Journal of Sound and Vibration,1995,187(4):695-712. doi: 10.1006/jsvi.1995.0553 [6] 罗恩,邝君尚,黄伟江,等.非线性耦合热弹性动力学的非传统Hamilton型变分原理[J].中国科学(A辑),2002,32(4):337-347. [7] Finlayson B.A.The Method of Weighted Residuals and Variational Principles[M].New York:Acad Press,1972,336-337.
计量
- 文章访问数: 3106
- HTML全文浏览量: 134
- PDF下载量: 888
- 被引次数: 0