留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘滞性粒子动力学中的二维非自相似初值问题

孙文华 盛万成

孙文华, 盛万成. 粘滞性粒子动力学中的二维非自相似初值问题[J]. 应用数学和力学, 2007, 28(9): 1063-1070.
引用本文: 孙文华, 盛万成. 粘滞性粒子动力学中的二维非自相似初值问题[J]. 应用数学和力学, 2007, 28(9): 1063-1070.
SUN Wen-hua, SHENG Wan-cheng. Two Dimensional Non-Selfsimilar Initial Value Problem for Adhesion Particle Dynamics[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1063-1070.
Citation: SUN Wen-hua, SHENG Wan-cheng. Two Dimensional Non-Selfsimilar Initial Value Problem for Adhesion Particle Dynamics[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1063-1070.

粘滞性粒子动力学中的二维非自相似初值问题

基金项目: 国家自然科学基金资助项目(10671120)
详细信息
    作者简介:

    孙文华(1976- ),男,山东人,博士(联系人.E-mail:sunwenhua@tom.com).

  • 中图分类号: O175.27

Two Dimensional Non-Selfsimilar Initial Value Problem for Adhesion Particle Dynamics

  • 摘要: 研究了二维粘滞性粒子动力学中的非自相似初值问题.该初值被一圆环分为内外两块常状态.利用广义特征分析的方法和广义Rankine-Hugoniot关系,该关系是常微分方程组,一个包含狄拉克激波和真空的整体解被构造性地得到.
  • [1] Weinan E,Guo Y Rykov,Sinai Ya G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[J].Comm Phys Math,1996,177:349-380. doi: 10.1007/BF02101897
    [2] Shandarin F,Zeldovich Ya B.The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitation medium[J].Reviews of Modern Physics,1989,61(2):185-220. doi: 10.1103/RevModPhys.61.185
    [3] 李荫藩.第二阶“大粒子”差分法[J].中国科学A辑,1985,28(8):729-739.
    [4] Sheng W, Zhang T. The Riemann problem for transportation equation in gas dynamics[J].Mem Amer Math Soc,1999,137(654):1-77.
    [5] Li J,Yang S, Zhang T.The Two-Dimensional Riemann Problem in Gas Dynamics[M].Harlow:Longman Scientific and Technical,1998.
    [6] Korchinski D J.Solutions of a Riemann Problem for a 2× 2 System of Conservation Laws Possessing Classical Solutions[D].New York:Adelphi University Thesis,1977.
    [7] Floch Le P.An existence and uniqueness result for two nonstrictly hyperbolic systems[A].In:“Nonlinear Evolution Equations That Change Type,”IMA Volumes in Mathematics and Its Applications[C].New York/Berlin:Springer-Verlag,1990,27.
    [8] Tan D, Zhang T, Zheng Y. Delta-shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws[J].J Differential Equations,1994,112(1):1-32. doi: 10.1006/jdeq.1994.1093
    [9] Yang H, Sun W. The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws[J].Nonlinear Analysis,2006, doi: 10.1016/j.na.2006.09.057.
    [10] Lax P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[A].Conf Board Math Sci[C].Philadelphia:SLAM,1973,11.
    [11] Yang H. Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics[J].J Math Anal and Appl,2001,260(1):18-35. doi: 10.1006/jmaa.2000.7426
    [12] Yang X. Research announcements: Un-selfsimilar elementary wave and global solutions of a class of multi-dimensional conservation laws[J].Advances in Mathematics (China),2005,34(3): 367-369.
    [13] 杨小舟, 黄飞敏.简化Euler方程的二维Riemann问题[J].科学通报,1998,43(6):441-444.
    [14] Yang X. Mulit-dimensional Riemann problem of scalar conservation laws[J].Acta Mathematica Scientia,1999,19(2):190-200.
    [15] Yang X. The Singular structure of Non-selfsimilar global n dimensional burgers equation[J].Acta Mathematicae Applicatae Sinica(English Series),2005,21(3),505-518.
    [16] Huang F,Wang Z.Well posedness for pressureless flow[J].Comm Math Phys,2001,222(1):117-146. doi: 10.1007/s002200100506
    [17] Li J, Zhang T. Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations[A].Advances in Nonlinear Partial Differential Equations and Related Area[C].Singapore:World Sci Publ,River Edge, NJ, 1998, 219-232.
    [18] Li J, Li W. Riemann problem for the zero-pressure flow in gas dynamics[J].Progr Natur Sci,2001,11(5):331-344.
  • 加载中
计量
  • 文章访问数:  2782
  • HTML全文浏览量:  142
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-07-05
  • 修回日期:  2007-05-18
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回