[1] |
Dai W.A heavy traffic limit theorem for queueing networks with finite capacity[A].Presentation With Preprint at INFORMS Applied Probability Conference[C].Atlanta, USA,1995.
|
[2] |
Dai W. Brownian approximations for queueing networks with finite buffers: modeling,heavy traffic analysis and numerical implementations[D].Ph D Thesis.School of Mathematics, Georgia Institute of Technology, 1996. Aslo published in UMI Dissertation Services, A Bell & Howell Company, 300 N.Zeeb Road, Ann Arbor,Michican 48106, USA,1997.
|
[3] |
Dai J G,Dai W.A heavy traffic limit theorem for a class of open queueing networks with finite buffers[J].Queueing Systems,1999,32(1/3),5-40.
|
[4] |
Reiman M I.Open queueing networks in heavy traffic [J].Mathematics of Operations Research,1984,9(3):441-458. doi: 10.1287/moor.9.3.441
|
[5] |
Bramson M. State space collapse with application to heavy traffic limits for multiclass queueing networks[J].Queueing Systems,1998,30(1/2):89-148. doi: 10.1023/A:1019160803783
|
[6] |
Bramson M.State space collapse for queueing networks[A].Proceedings of the International Congress of Mathematicians[C].Bielefeld,Germany:Documenta mathematica,Vol Ⅲ.1998,,213-222.
|
[7] |
Williams R J.Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse[J].Queueing Systems: Theory and Applications,1998,30(1/2):27-88. doi: 10.1023/A:1019108819713
|
[8] |
Williams R J.Reflecting diffusions and queueing networks[A].Proceedings of the International Congress of Mathematicians[M].Bielefeld,Germany:Documenta mathematica,Vol Ⅲ.1998,321-330.
|
[9] |
Bramson M,Dai J.G. Heavy traffic limits for some queueing networks[J].Annals of Applied Probability,2001,11(1):49-90. doi: 10.1214/aoap/998926987
|
[10] |
Chen H,Zhang H. A sufficient condition and a necessary condition for the diffusion approximations of multiclass queueing networks under priority service displines[J].Queueing Systems,2000,34(1/4):237-268. doi: 10.1023/A:1019113204634
|
[11] |
Chen H,Zhang H.Diffusion approximations for some multiclass queueing networks with FIFO service disciplines[J].Mathematics of Operations Research,2000,25(4):679-707. doi: 10.1287/moor.25.4.679.12115
|
[12] |
Harrison J M,Williams R J.Multidimensional reflected Brownian motions having exponential stationary distributions[J].Annals of Probability,1987,15(1):115-137. doi: 10.1214/aop/1176992259
|
[13] |
Dai J G,Harrison J M.Reflected Brownian motion in an orthant: numerical methods for steady-state analysis[J].Annals of Applied Probability,1992,2(1):65-86. doi: 10.1214/aoap/1177005771
|
[14] |
Shen X,Chen H,Dai J G,et al.The finite element method for computing the stationary distribution of an SRBM in a hypercube with applications to finite buffer queueing networks[J].Queueing Systems,2002,42(1):33-62. doi: 10.1023/A:1019942711261
|
[15] |
Dai J G,Wang Y.Nonexistence of Brownian models of certain multicalss queueing networks[J].Queueing Systems,1993,13(1/3):41-46. doi: 10.1007/BF01158928
|
[16] |
Williams R J.An invariance principle for semimartingale reflecting Brownian motions in an orthant[J].Queueing Systems,1998,30(1/2):5-25. doi: 10.1023/A:1019156702875
|
[17] |
Ethier S N,Kurtz T G.Markov Processes: Charaterization and Convergence[M]. New York:Wiley,1986.
|
[18] |
Bernard A,Kharroubi A El.Regulation deterministes et stochastiques dans le premier “orthant” de Rn[J].Stochastics Stochastics Rep,1991,34(3/4):149-167.
|
[19] |
Harrison J M,Reiman M I.Reflected Brownian motion on an orthant[J].Annals of Probability,1981,9(2):302-308. doi: 10.1214/aop/1176994471
|