留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形变张量的特征值与Boussinesq方程组的正则性估计

王震 邓大文

王震, 邓大文. 形变张量的特征值与Boussinesq方程组的正则性估计[J]. 应用数学和力学, 2017, 38(11): 1279-1288. doi: 10.21656/1000-0887.370355
引用本文: 王震, 邓大文. 形变张量的特征值与Boussinesq方程组的正则性估计[J]. 应用数学和力学, 2017, 38(11): 1279-1288. doi: 10.21656/1000-0887.370355
WANG Zhen, DENG Da-wen. Eigenvalues of the Deformation Tensor and Regularity Estimates for the Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1279-1288. doi: 10.21656/1000-0887.370355
Citation: WANG Zhen, DENG Da-wen. Eigenvalues of the Deformation Tensor and Regularity Estimates for the Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1279-1288. doi: 10.21656/1000-0887.370355

形变张量的特征值与Boussinesq方程组的正则性估计

doi: 10.21656/1000-0887.370355
详细信息
    作者简介:

    王震(1992—),男,硕士生(通讯作者. E-mail: wz05120207@163.com);邓大文(1961—),男,教授,博士,硕士生导师.

  • 中图分类号: O175.29

Eigenvalues of the Deformation Tensor and Regularity Estimates for the Boussinesq Equations

  • 摘要: 讨论了二维及三维满足周期边界条件的Boussinesq方程初边值问题的局部正则解在有限时间内爆破的可能性.在二维情况下,用形变张量的特征值给出温度梯度的L2估计,从中看出若流体微团变形的速率大,则解爆破的可能性就大.在三维情况下,用形变张量的特征值和温度的偏导给出涡量的L2估计,从中发现若流体微团在大部分时间内一般是平面拉伸,且温度的偏导较小时,解爆破的可能性就大;若一般是线性拉伸,温度的偏导又不任意增大时,解爆破的可能性就小.
  • [1] Chae D, Nam H-S. Local existence and blow-up criterion for the Boussinesq equations[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics,1997,127(5): 935-946.
    [2] Chae D. Global regularity for the 2D Boussinesq equations with partial viscousity terms[J]. Advances in Mathematics,2006,203(2): 497-513.
    [3] Hou T Y, Li C. Global well-posedness of the viscous Boussinesq equations[J]. Discrete and Continuous Dynamical Systems,2005,12(1): 1-12.
    [4] Ishimura N, Morimoto H. Remarks on the blow-up criterion for the 3D Boussinesq equations[J]. Mathematical Models and Methods in Applied Sciences,1999,9(9): 1323-1332.
    [5] QIU Hua, DU Yi, YAO Zheng-an. A blow-up criterion for 3D Boussinesq equations in Besov spaces[J]. Nonlinear Analysis,2010,73(1):806-815.
    [6] QIN Yu-ming, YANG Xing-guang, WANG Yu-zhu, et al. Blow-up criteria of smooth solutions to the 3D Boussinesq equations[J]. Mathematical Methods in the Applied Sciences,2012,35(3): 278-285.
    [7] XIANG Zhao-yin. The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces[J]. Mathematical Methods in the Applied Sciences,2011,34(3): 360-372.
    [8] XU Fu-yi, ZHANG Qian, ZHENG Xiao-xin. Regularity criteria of the 3D Boussinesq equations in the Morrey-Campanato space[J]. Acta Applicandae Mathematicae,2012,121(1): 231-240.
    [9] YANG Xing-guang, ZHANG Ling-rui. BKM’s criterion of weak solutions for the 3D Boussinesq equations[J]. Journal of Partial Differential Equations,2014,27(1): 64-73.
    [10] YE Zhuan. A logarithmically improved regularity criterion of smooth solutions for the 3D Boussinesq equations[J]. Osaka Journal of Mathematics,2016,53(2): 417-423.〖JP〗
    [11] ZHANG Zu-jin. Some regularity criteria for the 3D Boussinesq equations in the class L2(0,T;B-1,)[J]. ISRN Applied Mathematics,2014. doi: 10.1155/2014/564758.
    [12] FAN Ji-shan, ZHOU Yong. A note on regularity criterion for the 3D Boussinesq system with partial viscosity[J]. Applied Mathematics Letters,2009,22(5): 802-805.
    [13] YE Zhuan. Regularity criteria for 3D Boussinesq equations with zero thermal diffusion[J]. Electronic Journal of Differential Equations,2015,2015(97): 1-7.
    [14] Gala S, GUO Zheng-guang, Raguas M A. A remark on the regularity criterion of Boussinesq equations with zero heat conductivity [J]. Applied Mathematics Letters,2014,27: 70-73.
    [15] Chae D. On the spectral dynamics of the deformation tensor and new a priori estimates for the 3D Euler equations[J]. Communications in Mathematical Physics,2005,263(3): 789-801.
    [16] Chae D.Incompressible Euler Equations: the Blow-up Problem and Related Results [M]//Chapter 1.Handbook of Differential Equations: Evolutionary Equations.Vol 4, 2008: 1-55.
  • 加载中
计量
  • 文章访问数:  1090
  • HTML全文浏览量:  134
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2017-01-12
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回