留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PDMS表面上的液滴蒸发实验研究

夏雪莲 郑旭 黄先富 周金枝 余迎松

夏雪莲, 郑旭, 黄先富, 周金枝, 余迎松. PDMS表面上的液滴蒸发实验研究[J]. 应用数学和力学, 2017, 38(5): 495-502. doi: 10.21656/1000-0887.370358
引用本文: 夏雪莲, 郑旭, 黄先富, 周金枝, 余迎松. PDMS表面上的液滴蒸发实验研究[J]. 应用数学和力学, 2017, 38(5): 495-502. doi: 10.21656/1000-0887.370358
XIA Xue-lian, ZHENG Xu, HUANG Xian-fu, ZHOU Jin-zhi, YU Ying-song. Experimental Investigation of Evaporating Sessile Droplets on PDMS Surface[J]. Applied Mathematics and Mechanics, 2017, 38(5): 495-502. doi: 10.21656/1000-0887.370358
Citation: XIA Xue-lian, ZHENG Xu, HUANG Xian-fu, ZHOU Jin-zhi, YU Ying-song. Experimental Investigation of Evaporating Sessile Droplets on PDMS Surface[J]. Applied Mathematics and Mechanics, 2017, 38(5): 495-502. doi: 10.21656/1000-0887.370358

PDMS表面上的液滴蒸发实验研究

doi: 10.21656/1000-0887.370358
基金项目: 国家自然科学基金(面上项目)(11572114)
详细信息
    作者简介:

    夏雪莲(1992—),女,硕士生(E-mail: wyb569183976@qq.com);余迎松(1979—),男,副教授,博士(通讯作者. E-mail: yuystm@mail.hbut.edu.cn).

  • 中图分类号: O363.2

Experimental Investigation of Evaporating Sessile Droplets on PDMS Surface

Funds: The National Natural Science Foundation of China(General Program)(11572114)
  • 摘要: 利用粒子跟踪测速(particle tracking velocimetry, PTV) 技术,研究了聚二甲基硅氧烷(polydimethylsiloxane, PDMS)表面上的液滴蒸发行为.发现固液界面上的荧光微球首先向固液界面中心移动,而后发生运动反转,向三相接触线移动.其原因是由于接触线钉扎时接触线附近的蒸发通量较小,从而引起向液滴中心的流动,这种流动将微球带向液滴中心.理论分析了三相接触线的移动特征,发现其移动速度理论值与实验值在同一量级,而移动加速度的实验值较理论值偏大,造成这种偏差的原因是三相接触线处的荧光微球削弱了基底对三相接触线的钉扎作用.
  • [1] 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.(ZHAO Ya-pu. Physical Mechanics of Surface and Interface [M]. Beijing: Science Press, 2012.(in Chinese))
    [2] Picknett R G, Bexon R. The evaporation of sessile or pendant drops in still air[J]. Journal of Colloid and Interface Science,1977,61(2): 336-350.
    [3] Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature,1997,389: 827-829.
    [4] ZHAO Ya-pu. Moving contact line problem: advances and perspectives[J]. Theoretical and Applied Mechanics Letters,2014,4(3): 034002.
    [5] Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J]. Journal of Physical Chemistry B,2006,110(4): 7090-7094.
    [6] Hu H, Larson R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir,2005,21(9): 3963-3971.
    [7] Petsi A J, Burganos V N. Evaporation-induced flow in an inviscid liquid line at any contact angle[J]. Physical Review E,2006,73(4): 041201.
    [8] Berteloot G, Pham C T, Daerr A, et al. Evaporation-induced flow near a contact line: consequences on coating and contact angle[J]. Europhysics Letters,2008,83(1): 14003.
    [9] Gelderblom H, Bloemen O, Snoeijer J H. Stokes flow near the contact line of an evaporating drop[J]. Journal of Fluid Mechanics,2012,709: 69-84.
    [10] Dhavaleswarapu H K, Migliaccio C P, Garimella S V, et al. Experimental investigation of evaporation from low-contact-angle sessile droplets[J]. Langmuir,2010,26(2): 880-888.
    [11] Dash S, Chandramohan A, Garimella S V. Flow visualization during droplet evaporation on hydrophobic and superhydrophobic surfaces[J]. Journal of Heat Transfer,2014,136(8): 080917.
    [12] Pan Z H, Dash S, Weibel J A, et al. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates[J]. Langmuir,2013,29(51): 15831-15841.
    [13] WANG Zi-qian, ZHAO Ya-pu. In situ observation of thermal Marangoni convection on the surface of a sessile droplet by infrared thermal imaging[J]. Journal of Adhesion Science and Technology,2012,26(12/17): 2177-2188.
    [14] Christy J R E, Hamamoto Y, Sefiane K. Flow transition within an evaporating binary mixture sessile drop[J]. Physical Review Letters,2011,106(20): 205701.
    [15] Hamamoto Y, Cheristy J R E, Sefiane K. The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate[J]. Journal of Thermal Science and Technology,2012,7(3): 425-436.
    [16] HE Ming-hao, QIU Hui-he. Internal flow patterns of an evaporating multicomponent droplet on a flat surface[J]. International Journal of Thermal Sciences,2016,100: 10-19.
    [17] Ido T, Murai Y, Yamamoto F. Postprocessing algorithm for particle-tracking velocimetry based on ellipsoidal equations[J]. Experiments in Fluids,2002,32(3): 326-336.
    [18] ZHENG Xu, KONG Gao-pan, Silber-Li Zhan-hua. The influence of nano-particle tracers on the slip length measurements by microPTV[J]. Acta Mechanica Sinica,2013,29(3): 411-419.
    [19] Stauber J M, Wilson S K, Duffy B R, et al. Evaporation of droplets on strongly hydrophobic substrates[J]. Langmuir,2015,31(12): 3653-3660.
    [20] 徐国旺, 廖明朝. 拟合圆的几种方法[J]. 武汉工业学院学报, 2002(4): 104-106.(XU Guo-wang, LIAO Ming-chao. A varity of methods of fit circle[J]. Journal of Wuhan Polytechnic University,2002(4): 104-106.(in Chinese))
    [21] YU Ying-song, WANG Zi-qian, ZHAO Ya-pu. Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces[J]. Journal of Colloid and Interface Science,2012,365(1): 254-259.
    [22] Weast R C, Astle M J. CRC Handbook of Chemistry and Physics [M]. 62nd ed. Boca Raton, FL: CRC Press, 1981.
  • 加载中
计量
  • 文章访问数:  881
  • HTML全文浏览量:  148
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回