留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尖锐V型切口混凝土梁的应力强度因子研究

童谷生 胡宗棋 徐鹏华

童谷生, 胡宗棋, 徐鹏华. 尖锐V型切口混凝土梁的应力强度因子研究[J]. 应用数学和力学, 2018, 39(3): 300-310. doi: 10.21656/1000-0887.380159
引用本文: 童谷生, 胡宗棋, 徐鹏华. 尖锐V型切口混凝土梁的应力强度因子研究[J]. 应用数学和力学, 2018, 39(3): 300-310. doi: 10.21656/1000-0887.380159
TONG Gusheng, HU Zongqi, XU Penghua. Study on Stress Intensity Factors of Concrete Beams With Sharp V Notches[J]. Applied Mathematics and Mechanics, 2018, 39(3): 300-310. doi: 10.21656/1000-0887.380159
Citation: TONG Gusheng, HU Zongqi, XU Penghua. Study on Stress Intensity Factors of Concrete Beams With Sharp V Notches[J]. Applied Mathematics and Mechanics, 2018, 39(3): 300-310. doi: 10.21656/1000-0887.380159

尖锐V型切口混凝土梁的应力强度因子研究

doi: 10.21656/1000-0887.380159
基金项目: 国家自然科学基金(11242006;11462005)
详细信息
    作者简介:

    童谷生(1962—),男,教授,博士(通讯作者. E-mail: tonggusheng@126.com).

  • 中图分类号: O344

Study on Stress Intensity Factors of Concrete Beams With Sharp V Notches

Funds: The National Natural Science Foundation of China(11242006;11462005)
  • 摘要: 对含尖锐V型切口构件的破坏评估通常是利用切口应力强度因子来确定,切口应力强度因子指的是切口周围渐进线弹性应力场强度.对于含尖锐V型切口构件来说,单位切口应力强度因子的大小是由V型切口角度决定.应变能量密度准则是根据一定体积内应变能的密度是否达到临界值来判断构件断裂破坏的准则,当这个体积足够小不影响Williams方程的高阶次解时,应变能量密度准则就能通过切口应力强度因子进行表示.考虑Ⅰ型荷载条件下,分别采用平均应变能量密度准则和Carpinteri有限断裂力学方法计算V型切口应力强度因子,两者的理论取值非常接近.同时通过试验,证明两种断裂准则给出的切口应力强度因子的理论值与实验数据吻合程度较好.
  • [1] DUNN M L, SUWITO W, CUNNINGHAM S. Fracture initiation at sharp notches: correlation using critical stress intensities[J].International Journal of Solids and Structures,1997,34(29): 3873-3883.
    [2] DUNN M L, SUWITO W, CUNNINGHAM S, et al. Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading[J]. International Journal of Fracture,1997,84(4): 367-381.
    [3] LEGUILLON D, YOSIBASH Z. Crack onset at a V-notch, influence of the notch tip radius[J]. International Journal of Fracture,2003,122(1/2): 1-21.
    [4] VERREMAN Y, NIE B. Early development of fatigue cracking at manual fillet welds[J]. Fatigue and Fracture of Engineering Materials and Structures,2010,19(6): 669-681.
    [5] PLUVINAGE G. Rupture and fatigue initiated from notches, application of the notch intensity factor[J]. Revista Fructure Mecanique,1997,3(4): 53-61.
    [6] LAZZARIN P, TOVO R. A notch intensity factor approach to the stress analysis of welds[J]. Fatigue and Fracture of Engineering Materials and Structures,1998,21(9): 1089-1103.
    [7] ATZORI B, LAZZARIN P, TOVO R. From a local stress approach to fracture mechanics: a comprehensive evaluation of the fatigue strength of welded joints[J]. Fatigue and Fracture of Engineering Materials and Structures,1999,22(5): 369-381.
    [8] ATZORI B, LAZZARIN P, TOVO R. Stress field parameters to predict the fatigue strength of notched components[J]. Journal of Strain Analysis for Engineering Design,1999,34(6): 437-453.
    [9] LAZZARIN P, ZAMBARDI R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches[J]. International Journal of Fracture,2001,112(3): 275-298.
    [10] YOSIBASH Z, BUSSIBA A, GILAD I. Failure criteria for brittle elastic materials[J]. International Journal of Fracture,2004,125(3/4): 307-333.
    [11] LAZZARIN P, BERTO F, ELICES M, et al. Brittle failures from U- and V-notches in mode I and mixed, I+II, mode: a synthesis based on the strain energy density averaged on finite-size volumes[J]. Fatigue and Fracture of Engineering Materials and Structures,2009,32(8): 671-684.
    [12] BERTO F, LAZZARIN P. A review of the volume-based strain energy density approach applied to V-notches and welded structures[J]. Theoretical and Applied Fracture Mechanics,2009,52(3): 183-194.
    [13] BERTO F, LAZZARIN P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches[J]. Materials Science and Engineering: R,2014,75(1): 1-48.
    [14] TREIFI M, OYADIJI S O. Strain energy approach to compute stress intensity factors for isotropic homogeneous and bi-material V-notches[J]. International Journal of Solids and Structures,2013,50(14/15): 2196-2212.
    [15] DAVIS B R, WAWRZYNEK P A, INGRAFFEA A R. 3-D simulation of arbitrary crack growth using an energy-based formulation—part I: planar growth[J]. Engineering Fracture Mechanics,2014,115(1): 204-220.
    [16] CARPINTERI A, CORNETTI P, PUGNO N, et al. A finite fracture mechanics approach to structures with sharp V-notches[J]. Engineering Fracture Mechanics,2008,75(7): 1736-1752.
    [17] CORNETTI P, PUGNO N, CARPINTERI A, et al. Finite fracture mechanics: a coupled stress and energy failure criterion[J]. Engineering Fracture Mechanics,2006,73(14): 2021-2033.
    [18] YOSIBASH Z, PRIEL E, LEGUILLON D. A failure criterion for brittle elastic materials under mixed-mode loading[J]. International Journal of Fracture,2006,141(1/2): 291-312.
    [19] GROSS B, MENDELSON A. Plane elastostatic analysis of V-notched plates[J]. International Journal of Fracture Mechanics,1972,8(3): 267-276.
    [20] TADA H, PARIS P C, IRWIN G R. The Stress Analysis of Cracks Handbook [M]. New York: ASME Press, 2000.
    [21] CARPINTERI A. Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[J].Engineering Fracture Mechanics,1987,26(1): 143-155.
    [22] LEGGET D R F. American society for testing and materials[J].Nature,1964,203(4945): 565-568.
    [23] GOMEZ F J, ELICES M. Fracture of components with V-shaped notches[J]. Engineering Fracture Mechanics,2003,70(14): 1913-1927.
  • 加载中
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  140
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-06
  • 修回日期:  2018-01-11
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回