留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械多体系统碰撞动力学的对称性和守恒量研究

郑明亮 冯鲜 李文霞 曹亚玲

郑明亮, 冯鲜, 李文霞, 曹亚玲. 机械多体系统碰撞动力学的对称性和守恒量研究[J]. 应用数学和力学, 2018, 39(11): 1292-1299. doi: 10.21656/1000-0887.380291
引用本文: 郑明亮, 冯鲜, 李文霞, 曹亚玲. 机械多体系统碰撞动力学的对称性和守恒量研究[J]. 应用数学和力学, 2018, 39(11): 1292-1299. doi: 10.21656/1000-0887.380291
ZHENG Mingliang, FENG Xian, LI Wenxia, CAO Yalin. Study on Symmetries and Conserved Quantities of Mechanical Multibody System Collision Dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1292-1299. doi: 10.21656/1000-0887.380291
Citation: ZHENG Mingliang, FENG Xian, LI Wenxia, CAO Yalin. Study on Symmetries and Conserved Quantities of Mechanical Multibody System Collision Dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1292-1299. doi: 10.21656/1000-0887.380291

机械多体系统碰撞动力学的对称性和守恒量研究

doi: 10.21656/1000-0887.380291
基金项目: 江苏省高等学校自然科学基金(18KJB460027)
详细信息
    作者简介:

    郑明亮(1988—),男,讲师,博士(通讯作者. E-mail: zhmlwxcstu@163.com).

  • 中图分类号: TH122;O316

Study on Symmetries and Conserved Quantities of Mechanical Multibody System Collision Dynamics

  • 摘要: 为给复杂机械多体系统碰撞动力学问题的定量和定性分析提供一个强有力新工具,该文将现代分析力学中的对称性理论引入到机械多体外碰撞动力学研究中.首先,基于冲量动量法推导系统碰撞动力学的Euler-Lagrange方程;其次,引进群分析理论,根据不变性原则给出系统存在Noether对称性与Lie对称性的各自条件方程以及得到相应守恒量的形式,为动力学方程的解析积分理论提供了有效途径.最后以一平面开环两连杆机构的碰撞力学为例进行实际分析运用.研究表明,借助对称性和守恒量可以得到机械多体系统动力学更深层次的力学规律和运动特性,可为系统更精确的动态优化设计和先进控制奠定理论基础.
  • [1] 吴洪涛, 熊有伦. 机械工程中的多体系统动力学问题[J]. 中国机械工程, 2000,11(8): 608-610.(WU Hongtao, XIONG Youlun. Multibody system dynamics problems in mechanical engineering[J]. China Mechanical Engineering, 2000,11(8): 608-610.(in Chinese))
    [2] 尤超蓝, 洪嘉振. 空间交会对接过程的动力学模型与仿真[J]. 动力学与控制学报, 2004,2(2): 23-28.(YOU Chaolan, HONG Jiazhen. Dynamic model and simulation of space rendezvous and docking procedure[J]. Journal of Dynamics and Control,2004,2(2): 23-28.(in Chinese))
    [3] 刘锦阳, 洪嘉振. 卫星太阳能帆板的撞击问题[J]. 宇航学报, 2000,21(3): 34-38.(LIU Jingyang, HONG Jiazhen. Contact-impact of satellite’s plates[J]. Journal of Astronautics,2000,21(3): 34-38.(in Chinese))
    [4] 邹元杰, 韩增尧, 白照广, 等. 航天器柔性多体结构锁定撞击动力学分析与试验验证[J]. 强度与环境, 2011,38(1): 42-51.(ZHOU Yuanjie, HAN Zengyao, BAI Zhaoguang, et al. Impact analysis and test verification of flexible multi-body spacecraft structures in the latching process[J]. Structure & Environment Engineering, 2011,38(1): 42-51.(in Chinese))
    [5] 杨晓谦. 运输过程中堆码包装件碰撞分析[D]. 硕士学位论文. 无锡: 江南大学, 2011.(YANG Xiaoqian. The transport process of stacking package collision analysis[D]. Master Thesis. Wuxi: Jiangnan University, 2011.(in Chinese))
    [6] 陈钢, 贾庆轩, 孙汉旭, 等. 空间机器人目标捕获过程中碰撞运动分析[J]. 机器人, 2010,3(1): 432-438.(CHEN Gang, JIA Qingxuan, SUN Hanxu, et al. Analysis on impact motion of space robot in the object capturing process[J]. Robot,2010,3(1): 432-438.(in Chinese))
    [7] 华卫江, 章定国. 柔性机器人系统碰撞动力学建模[J]. 机械工程学报, 2008,43(12): 222-228.(HUA Weijiang, ZHANG Dingguo. Modeling of impact dynamics of flexible robots[J]. Journal of Mechanical Engineering,2008,43(12): 222-228.(in Chinese))
    [8] 解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板动态响应数值分析方法[J]. 应用数学和力学, 2017,38(4): 410-420.(XIE Jiang, LI Han, ZHOU Shuting, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads[J]. Applied Mathematics and Mechanics,2017,38(4): 410-420.(in Chinese))
    [9] 秦于越, 邓子辰, 胡伟鹏. 偏心冲击荷载作用下薄圆板动力学响应的保结构分析[J]. 应用数学和力学, 2014,35(8): 410-420.(QIN Yuyue, DENG Zichen, HU Weipeng. Dynamic analysis of circular thin plates under eccentric impact load with the structure-preserving method[J]. Applied Mathematics and Mechanics,2014,35(8): 410-420.(in Chinese))
    [10] STRONGE W J. Impact Mechanics [M]. Cambridge: Cambridge University Press, 2000.
    [11] SEIFRIED R, SCHIEHLEN W, EBERHARD P. Numerical and experimental evaluation of the coefficient of restitution for repeated impacts[J]. International Journal of Impact Engineering,2005,32(1): 508-524.
    [12] AMBROSIO J, POMBO J, RAUTER F, et al. A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation[J]. Multibody Dynamics,2009,12: 231-252.
    [13] 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009,39(3): 352-359.(DONG Fuxiang, HONG Jiazhen. Review of impact problem for dynamics of multibody system[J]. Progress in Mechanics,2009,39(3): 352-359.(in Chinese))
    [14] LEONE R, GOURIEUX T. Classical Noether’s theory with application to the linearly damped particle[J]. European Journal of Physics,2015,36(6): 065022.
    [15] BALSEIRO P. Hamiltonization of solids of revolution through reduction[J]. Journal of Nonlinear Science,2017,27(6): 2001-2035.
    [16] SINGLA K, GUPTA R K. Conservation laws for certain time fractional nonlinear systems of partial differential equations[J]. Communications in Nonlinear Science and Numerical Simulation,2017,53: 10-21.
    [17] 章定国. 多刚体系统的外碰撞动力学方程[J]. 应用数学和力学, 1997,18(6): 551-555.(ZHANG Dingguo. Exterior collision dynamic equations of multi rigid body system[J]. Applied Mathematics and Mechanics,1997,18(6): 551-555.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1471
  • HTML全文浏览量:  264
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-03-17
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回