[1] |
BYRNE C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Problems,2004,20(1): 103-120.
|
[2] |
CENSOR Y, ELFVING T, KOPF N, et al. The multiple-sets split feasibility problem and its applications for inverse problems[J]. Inverse Problems,2005,21(6): 2017-2084.
|
[3] |
CENSOR Y, BORTFELD T, MARTIN B, et al. A unified approach for inversion problems intensity-modulated radiation therapy[J]. Physics in Medicine and Biology,2006,51(10): 2353-2365.
|
[4] |
CENSOR Y, MOTOVA A, SEGAL A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. Journal of Mathematical Analysis and Applications,2007,327(2): 1244-1256.
|
[5] |
CENSOR Y, ELFVING T. A multiprojection algorithm using Bregman projections in a product space[J]. Numerical Algorithms,1994,8(2): 221-239.
|
[6] |
YANG Q Z. The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Problems,2004,20(4): 1261-1266.
|
[7] |
QU B, XIU N H. A note on the CQ algorithm for the split feasibility problem[J]. Inverse Problems,2005,21(5): 1655-1665.
|
[8] |
DANG Y Z,GAO Y. The strong convergence of a KM-CQ-like algorithm for split feasibility problem[J]. Inverse Problems,2011,27(1): 1-9.
|
[9] |
杨丽, 李军. Hilbert空间中分裂可行性问题的改进Halpern 迭代和黏性逼近算法[J]. 应用数学和力学, 2017,38(9): 1072-1080.(YANG Li, LI Jun. Modified Halpern iteration and viscosity approximation methods for split feasibility problems in Hilbert spaces[J]. Applied Mathematics and Mechanics,2017,38(9): 1072-1080.(in Chinese))
|
[10] |
BYRNE C. Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems,2002,18(2): 441-453.
|
[11] |
XU H K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces[J]. Inverse Problems,2010,26(10): 1-17.
|
[12] |
XU H K. A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems,2006,22(6): 2021-2034.
|
[13] |
WANG F H, XU H K. Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem[J]. Journal of Inequalities and Application,2010,2010(1): 1-13.
|
[14] |
GOEBEL K, KIRK W A. Topics in Metric Fixed Point Theory [M]. Cambridge: Cambridge University Press, 1990.
|
[15] |
XU H K. Viscosity approximation methods for nonexpansive mappings[J]. Journal of Mathematical Analysis and Applications,2004,298(1): 279-291.
|