留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

默认模式网络与任务正网络之间相互拮抗的神经动力学分析

程现军 王毅泓 王如彬

程现军, 王毅泓, 王如彬. 默认模式网络与任务正网络之间相互拮抗的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 127-138. doi: 10.21656/1000-0887.390027
引用本文: 程现军, 王毅泓, 王如彬. 默认模式网络与任务正网络之间相互拮抗的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 127-138. doi: 10.21656/1000-0887.390027
CHENG Xianjun, WANG Yihong, WANG Rubin. Neurodynamic Analysis of Mutual Antagonism Between Default Mode Networks and Task-Positive Networks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 127-138. doi: 10.21656/1000-0887.390027
Citation: CHENG Xianjun, WANG Yihong, WANG Rubin. Neurodynamic Analysis of Mutual Antagonism Between Default Mode Networks and Task-Positive Networks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 127-138. doi: 10.21656/1000-0887.390027

默认模式网络与任务正网络之间相互拮抗的神经动力学分析

doi: 10.21656/1000-0887.390027
基金项目: 国家自然科学基金(11232005;11472104)
详细信息
    作者简介:

    程现军(1991—),男,硕士生(E-mail: chxjmain@163.com);王如彬(1951—),男,教授,博士生导师(通讯作者. E-mail: rbwang@163.com).

  • 中图分类号: O29;O39

Neurodynamic Analysis of Mutual Antagonism Between Default Mode Networks and Task-Positive Networks

Funds: The National Natural Science Foundation of China(11232005;11472104)
  • 摘要: 任务正激活与任务负激活的工作机制是认知功能实现的基本要素.这一拮抗关系的失衡或者受损可能会引发一系列严重的退行性神经疾病,然而到目前为止,尚不清楚这种拮抗现象的神经机制.该文基于默认模式网络与任务正网络在突触层面上相互抑制的假设,并结合多种刺激条件下的工作记忆模型,进行了计算机数值模拟.研究结果表明: 1) 任务正网络与任务负网络之间在神经活动上呈现出拮抗关系; 2) 伴随着工作记忆刺激方向数目的增加,任务负网络神经活动的衰减程度会随之增大; 3) 当工作记忆相关的脑区其神经活动增加时,任务负网络的神经活动减少; 4) 并且随着工作记忆任务难度的增加,任务负网络的神经活动会迅速衰减.这些计算结果都与神经科学实验数据是匹配的.由于任务负激活是默认模式网络的主要特征,因此默认模式网络与任务正网络在突触层面上的相互抑制是这两种不同性质网络之间形成拮抗关系的根本原因.
  • [1] BUCKNER R L, ANDREWS-HANNA J R, SCHACTER D L. The Brain’s default network[J]. Annals of the New York Academy of Sciences,2008,1124(1): 1-38.
    [2] FOX M D, CORBETTA M, SNYDER A Z, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(26): 10046-10051.
    [3] GREICIUS M D, KRASNOW B, REISS A L, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(1): 253-258.
    [4] ANDREWSHANNA J R, SMALLWOOD J, SPRENG R N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance[J]. Annals of the New York Academy of Sciences,2014,1316(1): 29-52.
    [5] FOX M D, RAICHLE M E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nature Reviews Neuroscience,2007,8(9): 700-711.
    [6] MONTO S, PALVA S, VOIPIO J, et al. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[J]. Journal of Neuroscience,2008,28(33): 8268-8272.
    [7] PARHIZI B, DALIRI M R, BEHROOZI M. Decoding the different states of visual attention using functional and effective connectivity features in fMRI data[J]. Cognitive Neurodynamics,2018,12(2): 157-170.
    [8] MANTINI D, PERRUCCI M G, DEL G C, et al. Electrophysiological signatures of resting state networks in the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(32): 13170-13175.
    [9] MAYHEW S D, BAGSHAW A P. Dynamic spatiotemporal variability of alpha-BOLD relationships during the resting-state and task-evoked responses[J]. Neuroimage,2017,155: 120-137.
    [10] FOX M D, SNYDER A Z, VINCENT J L, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(27): 9673-9678.
    [11] HASENKAMP W, WILSONMENDENHALL C D, DUNCAN E, et al. Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states[J]. Neuroimage,2012,59(1): 750-760.
    [12] DIXON M L, ANDREWSHANNA J R, SPRENG R N, et al. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states[J]. Neuroimage,2016,147: 632-649.
    [13] CHAI X J, OFEN N, GABRIELI J D E, et al. Selective development of anticorrelated networks in the intrinsic functional organization of the human brain[J]. Journal of Cognitive Neuroscience,2014,26(3): 501-513.
    [14] SPRENG R N, STEVENS W D, VIVIANO J D, et al. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest[J]. Neurobiology of Aging,2016,45: 149-160.
    [15] BROYD S J, DEMANUELE C, DEBENER S, et al. Default-mode brain dysfunction in mental disorders: a systematic review[J]. Neuroscience and Biobehavioral Reviews,2009,33(3): 279-296.
    [16] DENNIS E L, THOMPSON P M. Functional brain connectivity using fMRI in aging and Alzheimer’s disease[J]. Neuropsychology Review,2014,24(1): 49-62.
    [17] HEARNE L J, MATTINGLEY J B, COCCHI L. Functional brain networks related to individual differences in human intelligence at rest[J]. Scientific Reports,2016,6: 32328.
    [18] FERGUSON M A, ANDERSON J S, SPRENG R N. Fluid and flexible minds: intelligence reflects synchrony in the brain’s intrinsic network architecture[J]. Network Neuroscience,2017,1(2): 192-207.
    [19] GAO W, LIN W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks[J]. Human Brain Mapping,2012,33(1): 192-202.
    [20] GOULDEN N, KHUSNULINA A, DAVIS N J, et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM[J]. Neuroimage,2014,99: 180-190.
    [21] SRIDHARAN D, LEVITIN D J, MENON V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(34): 12569-12574.
    [22] ANDERSON J S, FERGUSON M A, LOPEZLARSON M, et al. Connectivity gradients between the default mode and attention control networks[J]. Brain Connectivity,2011,1(2): 147-157.
    [23] HAMPSON M, DRIESEN N, ROTH J K, et al. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance[J]. Magnetic Resonance Imaging,2010,28(8): 1051-1057.
    [24] BLUHM R L, CLARK C R, MCFARLANE A C, et al. Default network connectivity during a working memory task[J]. Human Brain Mapping,2011,32(7): 1029-1035.
    [25] SOKOLOFF L. The physiological and biochemical bases of functional brain imaging[J]. Cognitive Neurodynamics,2008,2(1): 1-5.
    [26] COMPTE A, BRUNEL N, GOLDMANRAKIC P S, et al. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[J]. Cerebral Cortex,2000,10(9): 910-923.
    [27] RAICHLE M E. The brain’s default mode network[J]. Annual Review of Neuroscience,2015,38: 433-447.
    [28] KIM S Y, LIM W. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network[J]. Cognitive Neurodynamics,2017,11(5): 395-413.
    [29] ZENG L L, LIAO Y, ZHOU Z, et al. Default network connectivity decodes brain states with simulated microgravity[J]. Cognitive Neurodynamics,2016,10(2): 113-120.
    [30] BERNARDING C, STRAUSS D J, HANNEMANN R, et al. Neurodynamic evaluation of hearing aid features using EEG correlates of listening effort[J]. Cognitive Neurodynamics,2017,11(3): 203-215.
    [31] QIU X W, GONG H Q, ZHANG P M, et al. The oscillation-like activity in bullfrog ON-OFF retinal ganglion cell[J]. Cognitive Neurodynamics,2016,10(6): 481-493.
    [32] BROUWER G J, ARNEDO V, OFFEN S, et al. Normalization in human somatosensory cortex[J]. Journal of Neurophysiology,2015,114(5): 2588-2599.
  • 加载中
计量
  • 文章访问数:  1336
  • HTML全文浏览量:  119
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-04-13
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回