留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温合金GH4133B动态本构模型与失效模型研究

孟卫华 王建军 李坚 郭小军 郭伟国

孟卫华, 王建军, 李坚, 郭小军, 郭伟国. 高温合金GH4133B动态本构模型与失效模型研究[J]. 应用数学和力学, 2018, 39(6): 681-688. doi: 10.21656/1000-0887.390088
引用本文: 孟卫华, 王建军, 李坚, 郭小军, 郭伟国. 高温合金GH4133B动态本构模型与失效模型研究[J]. 应用数学和力学, 2018, 39(6): 681-688. doi: 10.21656/1000-0887.390088
MENG Weihua, WANG Jianjun, LI Jian, GUO Xiaojun, GUO Weiguo. Research on Dynamic Behavior and a Failure-Model for GH4133B Superalloy[J]. Applied Mathematics and Mechanics, 2018, 39(6): 681-688. doi: 10.21656/1000-0887.390088
Citation: MENG Weihua, WANG Jianjun, LI Jian, GUO Xiaojun, GUO Weiguo. Research on Dynamic Behavior and a Failure-Model for GH4133B Superalloy[J]. Applied Mathematics and Mechanics, 2018, 39(6): 681-688. doi: 10.21656/1000-0887.390088

高温合金GH4133B动态本构模型与失效模型研究

doi: 10.21656/1000-0887.390088
详细信息
    作者简介:

    孟卫华(1987—),男,工程师,硕士(E-mail: mengweihua1234@163.com);王建军(1987—),男,副研究员,博士(通讯作者. E-mail: jianjunw87@126.com).

  • 中图分类号: V252.2

Research on Dynamic Behavior and a Failure-Model for GH4133B Superalloy

  • 摘要: 根据典型航空发动机机匣常用高温合金GH4133B在不同温度(298~1 073 K)、不同应变率(10-1~5×103s-1)下的力学性能试验结果,结合机匣包容性分析用的J-C(Johnson-Cook)本构模型在实际应用中本身存在的不足,提出了一种更为准确地描述GH4133B合金力学行为的修正J-C本构模型(modified J-C model,MJC model),同时结合GH4133B在不同温度、不同应力三轴度的破坏行为,建立了基于J-C时效判据的一个经验型的失效模型.通过模型预测结果与试验结果对比,发现所建立的本构模型和失效模型能很好地预测GH4133B塑性流动应力及破坏行为.
  • [1] 肖云凯, 方秦, 吴昊, 等. Johnson-Cook本构模型参数敏感度分析[J]. 应用数学和力学, 2015,36(S): 21-28.(XIAO Yunkai, FANG Qin, WU Hao, et al. Analysis of parameter sensitivity for the Johnson-Cook constitutive model[J].Applied Mathematics and Mechanics,2015,36(S): 21-28.(in Chinese))
    [2] LIANG Riqiang, KHAN A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity,1999,15(9): 963-980.
    [3] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the 7th International Symposium on Ballistics.Hague, Netherlands, 1983,21: 541-547.
    [4] NEMAT-NASSER S, GUO Weiguo. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials,2003,35(11): 1023-1047.
    [5] 李建光, 施琪, 曹结东. Johnson-Cook本构方程的参数标定[J]. 兰州理工大学学报, 2012,35(2): 164-167.(LI Jianguang, SHI Qi, CAO Jiedong. Parameters calibration for Johnson-Cook constitutive equation[J]. Journal of Lanzhou University of Technology,2012,35(2): 164-167.(in Chinese))
    [6] GAMBIRASIO L, RIZZI E. An enhanced Johnson-Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow[J]. Computational Materials Science,2016,113: 231-265.
    [7] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics,1980,51(3): 1498-1504.
    [8] WANG Xuemei, SHI Jun. Validation of Johnson-Cook plasticity and damage model using impact experiment[J]. International Journal of Impact Engineering,2013,60: 67-75.
    [9] ZHANG Dingni, SHANGGUAN Qianqian, XIE Canjun, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds,2015,619: 186-194.
    [10] RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,1969,17(3): 210-217.
    [11] WANG Jianjun, GUO Weiguo, GUO Jin, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy[J]. Journal of Materials Engineering and Performance,2016,25(5): 2043-2052.
  • 加载中
计量
  • 文章访问数:  923
  • HTML全文浏览量:  121
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-04-28
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回