留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤分层结构下传输线感应雷电压算法研究

高金阁 李京校

高金阁, 李京校. 土壤分层结构下传输线感应雷电压算法研究[J]. 应用数学和力学, 2019, 40(8): 917-925. doi: 10.21656/1000-0887.390093
引用本文: 高金阁, 李京校. 土壤分层结构下传输线感应雷电压算法研究[J]. 应用数学和力学, 2019, 40(8): 917-925. doi: 10.21656/1000-0887.390093
GAO Jinge, LI Jingxiao. Study on Lightning Induced Voltages in Transmission Lines Under Soil Conductivity Stratified Structures[J]. Applied Mathematics and Mechanics, 2019, 40(8): 917-925. doi: 10.21656/1000-0887.390093
Citation: GAO Jinge, LI Jingxiao. Study on Lightning Induced Voltages in Transmission Lines Under Soil Conductivity Stratified Structures[J]. Applied Mathematics and Mechanics, 2019, 40(8): 917-925. doi: 10.21656/1000-0887.390093

土壤分层结构下传输线感应雷电压算法研究

doi: 10.21656/1000-0887.390093
基金项目: 北京市自然科学基金(8192052)
详细信息
    作者简介:

    高金阁(1987—),男,工程师(通讯作者. E-mail: gjg_ge@126.com).

  • 中图分类号: TM863

Study on Lightning Induced Voltages in Transmission Lines Under Soil Conductivity Stratified Structures

  • 摘要: 针对架空传输线感应雷过电压求解时理想地表假设与真实情况之间的矛盾,提出了一种基于Rusck模型,利用等效线高取代实际线高的方法,实现了土壤电导率分层结构下传输线感应雷电压的快速求解.与FDTD模拟结果对比验证了该方法的有效性和优越性.研究结果表明:对于电导率小于0.1 S/m的单质土壤类型,求解感应电压时应考虑电导率的影响,且电压峰值随电导率减小而增大.对于分层土壤结构,当上层土壤导电性较小时,感应电压随上层土壤增厚而变大;反之,随上层厚度增加而减小,当厚度超过5 m时,可忽略分层结构的影响.
  • [1] 陈家宏, 赵淳, 谷山强, 等. 我国电网雷电监测与防护技术现状及发展趋势[J]. 高电压技术, 2016,42(11): 3361-3375.(CHEN Jiahong, ZHAO Chun, GU Shanqiang, et al. Present status and development trend of lightning detection and protection technology of power grid in China[J]. High Voltage Engineering,2016,42(11): 3361-3375.(in Chinese))
    [2] TAYLOR C D, SATTERWHITE R C, HARRISON C W. The response of a terminated two wire transmission line excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Antennas and Propagation,1987,13(11): 987-989.
    [3] AGRAWAL A, PRICE H, GURBAXANI S. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility,1980,22(2): 119-129.
    [4] RACHIDI F. Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field[J]. IEEE Transactions on Electromagnetic Compatibility,1993,35(3): 404-407.
    [5] 高金阁, 马京津, 马海鹏, 等. 基于FDTD传输线雷电感应过电压模拟研究[J]. 高原气象, 2018,37(4): 1094-1101.(GAO Jinge, MA Jingjin, MA Haipeng, et al. Simulation of lightning induced overvoltage on transmission line based on FDTD[J]. Plateau Meteorology,2018,37(4): 1094-1101.(in Chinese))
    [6] 高金阁, 张其林, 李东帅, 等. 粗糙表面对雷电水平电场影响的模拟研究[J]. 气象科学, 2013,33(6): 627-633.(GAO Jinge, ZHANG Qilin, LI Dongshuai, et al. Propagation effects of the rough surface on the lightning horizontal electric field[J]. Journal of the Meteorological Sciences,2013,33(6): 627-633.(in Chinese))
    [7] 杨静, 郄秀书, 王建国, 等. 雷电在水平导体中产生感应电压的观测及数值模拟研究[J]. 物理学报, 2008,57(3): 1968-1975.(YANG Jing, QIE Xiushu, WANG Jianguo, et al. Observation of the lightning-induced voltage in the horizontal conductor and its simulation[J]. Acta Physica Sinica,2008,57(3): 1968-1975.(in Chinese))
    [8] HIDALEN H K. Analytical formulation of lightning-induced voltages on multiconductor overhead lines above lossy ground[J]. IEEE Transactions on Electromagnetic Compatibility,2003,45(1): 92-100.
    [9] 汤霄, 张其林, 李东帅, 等. 分层土壤结构下雷电感应过电压计算与分析[J]. 高电压技术, 2015,41(1): 84-93.(TANG Xiao, ZHANG Qilin, LI Dongshuai, et al. Calculation and analysis of lightning induced overvoltage with stratified ground structure[J]. High Voltage Engineering,2015,41(1): 84-93.(in Chinese))
    [10] 梁希强, 高强, 姚伟岸. 基于动力系统特性和群理论的一维周期结构瞬态响应的高效算法[J]. 应用数学和力学, 2018,39(2): 170-182.(LIANG Xiqiang, GAO Qiang, YAO Weian. An efficient algorithm based on dynamic system properties and group theory for transient responses of 1D periodic structures[J]. Applied Mathematics and Mechanics,2018,39(2): 170-182.(in Chinese))
    [11] 鲍四元, 邓子辰. 薄板弯曲自由振动问题的高精度近似解析解及改进研究[J]. 应用数学和力学, 2016,37(11): 1169-1180.(BAO Siyuan, DENG Zichen. High-precision approximate analytical solutions for free bending vibrations of thin plates and an improvement[J]. Applied Mathematics and Mechanics,2016,37(11): 1169-1180.(in Chinese))
    [12] 周凤玺, 曹小林. 深埋隧洞围岩应力的精确解与近似解的对比分析[J]. 应用数学和力学, 2017,38(10): 1166-1179.(ZHOU Fengxi, CAO Xiaolin. Comparison between exact solutions and approximate solutions of deep tunnels[J]. Applied Mathematics and Mechanics,2017,38(10): 1166-1179.(in Chinese))
    [13] DARVENIZA M. A practical extension of Rusck’s formula for maximum lightning-induced voltages that accounts for ground resistivity[J]. IEEE Transactions on Power Delivery,2007,22(1): 605-612.
    [14] 中华人民共和国电力工业部. 交流电气装置的过电压保护与绝缘配合: DL/T 620—1997[S]. 北京: 中国电力出版社, 1997.(Ministry of Electric Industry of the People’s Republic of China. Overvoltage protection and insulation coordination for AC electrical installations: DL/T 620—1997[S]. Beijing: China Electric Power Publishing Company, 1997.(in Chinese))
    [15] 边凯, 陈维江, 李成榕, 等. 架空配电线路雷电感应过电压计算研究[J]. 中国电机工程学报, 2012,32(31): 191-199.(BIAN Kai, CHEN Weijiang, LI Chengrong, et al. Calculation of lightning induced overvoltage on overhead distribution lines[J]. Proceedings of the CSEE,2012,32(31): 191-199.(in Chinese))
    [16] 高金阁, 李京校, 张仲, 等. 架空传输线雷电感应电压计算公式分析与修订[J]. 气象科学, 2017,37(6): 845-850.(GAO Jinge, LI Jingxiao, ZHANG Zhong, et al. Analysis and revision for formula of lightning induced voltage on overhead transmission line[J]. Journal of the Meteorological Sciences,2017,37(6): 845-850.(in Chinese))
    [17] CHOWDHURI P. Voltage surges induced on overhead lines by lightning strokes[J]. Proceedings of the Institution of Electrical Engineers,1967,114(12): 1899-1907.
    [18] JANKOV V. Estimation of the maximal voltage induced on an overhead line due to the nearby lightning[J]. IEEE Transactions on Power Delivery,1997,12(1): 315-324.
    [19] ANDREOTTI A, ASSANTE D, MOTOLLA F, et al. An exact closed-form solution for lightning-induced overvoltages calculations[J]. IEEE Transactions on Power Delivery,2009,24(3): 1328-1343.
    [20] PAULINO J O S, BARBOSA C F, LOPES I J S, et al. An approximate formula for the peak value of lightning-induced voltages in overhead lines[J]. IEEE Transactions on Power Delivery,2010,25(2): 843-851.
    [21] RACHIDI F, NUCCI C A, IANOZ M, et al. Influence of a lossy ground on lightning-induced voltages on overhead line[J]. IEEE Transactions on Electromagnetic Compatibility,1996,38(3): 250-264.
    [22] ZHANG Q L, ZHANG L, TANG X, et al. An approximate formula for estimating the peak value of lightning-induce overvoltage considering the stratified conducting ground[J]. IEEE Transactions on Power Delivery,2014,29(2): 884-889.
    [23] MUR G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations[J]. IEEE Transactions on Electromagnetic Compatibility,1981,23(4): 377-382.
    [24] BABA Y, RAKOV V A. Electric and magnetic fields predicted by different electromagnetic models of the lightning return stroke versus measured fields[J]. IEEE Transactions on Electromagnetic Compatibility,2009,51(3): 479-487.
  • 加载中
计量
  • 文章访问数:  1106
  • HTML全文浏览量:  165
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 修回日期:  2018-12-18
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回