[1] |
〖JP2〗CROSS M C, HOHENBERG P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 951-1112.
|
[2] |
BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Bénard convection[J]. Annual Reviews of Fluid Mechanics,2000,32: 709-778.
|
[3] |
WATANABE T, IIMA M, NISHIURA Y. Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243.
|
[4] |
YAHATA H. Travelling convection rolls in a binary fluid mixture[J]. Progress of Theoretical Physics,1991,85(5): 933-937.
|
[5] |
NING L Z, HARADA Y, YAHATA H. Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J]. Progress of Theoretical Physics,1997,97(6): 831-848.
|
[6] |
NING L Z, HARADA Y, YAHATA H. Localized traveling waves in binary fluid convection[J]. Progress of Theoretical Physics,1996,96(4): 669-682.
|
[7] |
NING L Z, HARADA Y, YAHATA H. Formation process of the traveling-wave state with a defect in binary fluid convection[J]. Progress of Theoretical Physics,1997,98(3): 551-566.
|
[8] |
KNOBLOCH E, MERCADER I, BATISTE O, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505. DOI: 10.1088/0169-5983/42/2/025505.
|
[9] |
TARAUT A V, SMORODIN B L, LCKE M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055. DOI: 10.1088/1367-2630/14/9/093055.
|
[10] |
MERCADER I, BATISTE O, ALONSO A, et al. Travelling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-265.
|
[11] |
MERCADER I, BATISTE O, ALONSO A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
|
[12] |
BARTEN W, LCKE M, KAMPS M, et al. Convection in binary fluid mixture II: localized traveling waves[J]. Physical Review E,1995,51: 5662-5680.
|
[13] |
JUNG D, LCKE M. Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect[J].Physical Review Letters,2002,89(5): 054502. DOI: 10.1103/PhysRevLett.89.054502.
|
[14] |
宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Lizhong, WANG Yongqi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese))
|
[15] |
宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401. DOI: 10.7498/aps.63.104401.(NING Lizhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta Physica Sinica,2014,63(10): 104401. DOI: 10.7498/aps.63.104401.(in Chinese))
|
[16] |
宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学(G辑): 物理 力学 天文学, 2009,39(5): 746-751.(NING Lizhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Scientia Sinica (Series G): Physica, Mechanica & Astronomica,2009,39(5): 746-751.(in Chinese))
|
[17] |
宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Bénard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401. DOI: 10.7498/aps.65.214401.(NING Lizhong, HU Biao, NING Bibo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401. DOI: 10.7498/aps.65.214401.(in Chinese))
|
[18] |
宁利中, 齐昕, 周洋, 等. 混合流体Rayleigh-Bénard行波对流中的缺陷结构[J]. 物理学报, 2009,58(4): 2528-2534.(NING Lizhong, QI Xin, ZHOU Yang, et al. Defect structures of Rayleigh-Bénard travelling wave convection in binary fluid mixtures[J]. Acta Physica Sinica,2009,58(4): 2528-2534.(in Chinese))
|
[19] |
NING L Z, QI X, YUAN Z, et al. A counter propagating wave state with a periodically horizontal motion of defects[J]. Journal of Hydrodynamics,2008,20(5): 567-573.
|
[20] |
ZHAO B X, TIAN Z F. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J]. Physics of Fluids,2015,27: 074102. DOI: 10.1063/1.4923235.
|
[21] |
宁利中, 渠亚伟, 宁碧波, 等. 一种新的混合流体对流竖向镜面对称对传波斑图[J]. 应用数学和力学, 2017,38(11): 1230-1239.(NING Lizhong, QU Yawei, NING Bibo, et al. A new type of counterpropagating wave pattern of vertical mirror symmetry in binary fluid convection[J]. Applied Mathematics and Mechanics,2017,38(11): 1230-1239.(in Chinese))
|
[22] |
胡彪, 宁利中, 宁碧波, 等. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017,38(10): 1103-1111.(HU Biao, NING Lizhong, NING Bibo, et al. Effects of horizontal flow on perturbation growth and the convection periodicity[J]. Applied Mathematics and Mechanics,2017,38(10): 1103-1111.(in Chinese))
|
[23] |
CLEVER R M. Finite amplitude longitudinal convection rolls in an inclined layer[J]. Journal of Heat Transfer,1973,95: 407-408.
|
[24] |
CLEVER R M, BUSSE F H. Instabilities of longitudinal convection rolls in an inclined layer[J]. Journal of Fluid Mechanics,1977,81: 107-125.
|
[25] |
DANIELS K E, BODENSCHATZ E. Defect turbulence in inclined layer convection[J].Physical Review Letters,2002,88: 034501. DOI: 10.1103/PhysRevLett.88.034501.
|
[26] |
DANIELS K E, PLAPP B B, BODENSCHATZ E. Pattern formation in inclined layer convection[J]. Physical Review Letters,2000,84: 5320-5323.
|
[27] |
HART J E. Stability of the flow in a differentially heated inclined box[J]. Journal of Fluid Mechanics,1971,47(3): 547-576.
|
[28] |
HART J E. Transition to a wavy vortex regime in convective flow between inclined plates[J]. Journal of Fluid Mechanics,1971,48: 265-271.
|
[29] |
RUTH D W. On the transition to transverse rolls in inclined infinite fluid layers-steady solutions[J]. International Journal of Heat & Mass Transfer,1980,23: 733-737.
|
[30] |
RUTH D W, RAITHBY G D, HOLLANDS K D T. On the secondary instability in inclined air layers[J]. Journal of Fluid Mechanics,1980,96: 481-492.
|
[31] |
RUTH D W, RAITHBY G D, HOLLANDS K D T. On free convection experiments in inclined air layers heated from below[J]. Journal of Fluid Mechanics,1980,96: 461-469.
|
[32] |
DANIELS K E, BRAUSCH O, PESCH W, et al. Competition and bistability of ordered undulations and undulation chaos in inclined layer convection[J]. Journal of Fluid Mechanics,2008,597: 261-282.
|
[33] |
BUSSE F H, CLEVER R M. Three-dimensional convection in an inclined layer heated from below[J]. Journal of Engineering Mathematics,1992,26: 1-19.
|