留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜层中的对流斑图及其临界条件

宁利中 吴昊 宁碧波 田伟利 宁景昊

宁利中, 吴昊, 宁碧波, 田伟利, 宁景昊. 倾斜层中的对流斑图及其临界条件[J]. 应用数学和力学, 2019, 40(4): 398-407. doi: 10.21656/1000-0887.390102
引用本文: 宁利中, 吴昊, 宁碧波, 田伟利, 宁景昊. 倾斜层中的对流斑图及其临界条件[J]. 应用数学和力学, 2019, 40(4): 398-407. doi: 10.21656/1000-0887.390102
NING Lizhong, WU Hao, NING Bibo, TIAN Weili, NING Jinghao. Convection Patterns and Corresponding Critical Conditions in an Inclined Layer[J]. Applied Mathematics and Mechanics, 2019, 40(4): 398-407. doi: 10.21656/1000-0887.390102
Citation: NING Lizhong, WU Hao, NING Bibo, TIAN Weili, NING Jinghao. Convection Patterns and Corresponding Critical Conditions in an Inclined Layer[J]. Applied Mathematics and Mechanics, 2019, 40(4): 398-407. doi: 10.21656/1000-0887.390102

倾斜层中的对流斑图及其临界条件

doi: 10.21656/1000-0887.390102
基金项目: 国家自然科学基金(10872164)
详细信息
    作者简介:

    宁利中(1961—),男,教授,博士(通讯作者. E-mail: ninglz@xaut.edu.cn).

  • 中图分类号: O357

Convection Patterns and Corresponding Critical Conditions in an Inclined Layer

Funds: The National Natural Science Foundation of China(10872164)
  • 摘要: 通过二维流体力学基本方程的数值模拟,探讨了Prandtl(普朗特)数Pr=6.99时,倾斜矩形腔体中的对流斑图和斑图转换的临界条件.根据倾角θ和相对Rayleigh(瑞利)数Rar的变化,倾斜矩形腔体中的对流斑图可以分为:单滚动圈对流斑图、充满腔体的多滚动圈对流斑图和过渡阶段的多滚动圈对流斑图.当θ一定时,随着Rar的减小,系统由充满腔体的多滚动圈对流斑图过渡到单滚动圈对流斑图.这时,对流振幅A和Nusselt(努塞尔)数Nu随着Rar的增加而增加.当Rar=9时,随着θ的增加,系统由充满腔体的多滚动圈对流斑图过渡到单滚动圈对流斑图,这时对流振幅A随着θ的增加而减小,Nusselt数Nu随着θ的增加而增加.在θc-Rar平面上对多滚动圈到单滚动圈对流斑图过渡的模拟结果表明, 在Rar=2时, 腔体中没有发现多滚动圈对流斑图.在Rar为2.5左右时,腔体中出现多滚动圈到单滚动圈对流斑图的过渡.当多滚动圈到单滚动圈对流斑图过渡的临界倾角θc<10°时,θc随着Rar的减小而增加.当θc>10°时,θc随着Rar的增加而增加,在Rar≤5时,θc随着Rar的增加而迅速增加;当Rar>5时,θc随着Rar的增加而缓慢增加.θc与Ra的关系与Rar类似
  • [1] 〖JP2〗CROSS M C, HOHENBERG P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 951-1112.
    [2] BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Bénard convection[J]. Annual Reviews of Fluid Mechanics,2000,32: 709-778.
    [3] WATANABE T, IIMA M, NISHIURA Y. Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243.
    [4] YAHATA H. Travelling convection rolls in a binary fluid mixture[J]. Progress of Theoretical Physics,1991,85(5): 933-937.
    [5] NING L Z, HARADA Y, YAHATA H. Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J]. Progress of Theoretical Physics,1997,97(6): 831-848.
    [6] NING L Z, HARADA Y, YAHATA H. Localized traveling waves in binary fluid convection[J]. Progress of Theoretical Physics,1996,96(4): 669-682.
    [7] NING L Z, HARADA Y, YAHATA H. Formation process of the traveling-wave state with a defect in binary fluid convection[J]. Progress of Theoretical Physics,1997,98(3): 551-566.
    [8] KNOBLOCH E, MERCADER I, BATISTE O, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505. DOI: 10.1088/0169-5983/42/2/025505.
    [9] TARAUT A V, SMORODIN B L, LCKE M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055. DOI: 10.1088/1367-2630/14/9/093055.
    [10] MERCADER I, BATISTE O, ALONSO A, et al. Travelling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-265.
    [11] MERCADER I, BATISTE O, ALONSO A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
    [12] BARTEN W, LCKE M, KAMPS M, et al. Convection in binary fluid mixture II: localized traveling waves[J]. Physical Review E,1995,51: 5662-5680.
    [13] JUNG D, LCKE M. Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect[J].Physical Review Letters,2002,89(5): 054502. DOI: 10.1103/PhysRevLett.89.054502.
    [14] 宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Lizhong, WANG Yongqi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese))
    [15] 宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401. DOI: 10.7498/aps.63.104401.(NING Lizhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta Physica Sinica,2014,63(10): 104401. DOI: 10.7498/aps.63.104401.(in Chinese))
    [16] 宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学(G辑): 物理 力学 天文学, 2009,39(5): 746-751.(NING Lizhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Scientia Sinica (Series G): Physica, Mechanica & Astronomica,2009,39(5): 746-751.(in Chinese))
    [17] 宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Bénard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401. DOI: 10.7498/aps.65.214401.(NING Lizhong, HU Biao, NING Bibo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401. DOI: 10.7498/aps.65.214401.(in Chinese))
    [18] 宁利中, 齐昕, 周洋, 等. 混合流体Rayleigh-Bénard行波对流中的缺陷结构[J]. 物理学报, 2009,58(4): 2528-2534.(NING Lizhong, QI Xin, ZHOU Yang, et al. Defect structures of Rayleigh-Bénard travelling wave convection in binary fluid mixtures[J]. Acta Physica Sinica,2009,58(4): 2528-2534.(in Chinese))
    [19] NING L Z, QI X, YUAN Z, et al. A counter propagating wave state with a periodically horizontal motion of defects[J]. Journal of Hydrodynamics,2008,20(5): 567-573.
    [20] ZHAO B X, TIAN Z F. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J]. Physics of Fluids,2015,27: 074102. DOI: 10.1063/1.4923235.
    [21] 宁利中, 渠亚伟, 宁碧波, 等. 一种新的混合流体对流竖向镜面对称对传波斑图[J]. 应用数学和力学, 2017,38(11): 1230-1239.(NING Lizhong, QU Yawei, NING Bibo, et al. A new type of counterpropagating wave pattern of vertical mirror symmetry in binary fluid convection[J]. Applied Mathematics and Mechanics,2017,38(11): 1230-1239.(in Chinese))
    [22] 胡彪, 宁利中, 宁碧波, 等. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017,38(10): 1103-1111.(HU Biao, NING Lizhong, NING Bibo, et al. Effects of horizontal flow on perturbation growth and the convection periodicity[J]. Applied Mathematics and Mechanics,2017,38(10): 1103-1111.(in Chinese))
    [23] CLEVER R M. Finite amplitude longitudinal convection rolls in an inclined layer[J]. Journal of Heat Transfer,1973,95: 407-408.
    [24] CLEVER R M, BUSSE F H. Instabilities of longitudinal convection rolls in an inclined layer[J]. Journal of Fluid Mechanics,1977,81: 107-125.
    [25] DANIELS K E, BODENSCHATZ E. Defect turbulence in inclined layer convection[J].Physical Review Letters,2002,88: 034501. DOI: 10.1103/PhysRevLett.88.034501.
    [26] DANIELS K E, PLAPP B B, BODENSCHATZ E. Pattern formation in inclined layer convection[J]. Physical Review Letters,2000,84: 5320-5323.
    [27] HART J E. Stability of the flow in a differentially heated inclined box[J]. Journal of Fluid Mechanics,1971,47(3): 547-576.
    [28] HART J E. Transition to a wavy vortex regime in convective flow between inclined plates[J]. Journal of Fluid Mechanics,1971,48: 265-271.
    [29] RUTH D W. On the transition to transverse rolls in inclined infinite fluid layers-steady solutions[J]. International Journal of Heat & Mass Transfer,1980,23: 733-737.
    [30] RUTH D W, RAITHBY G D, HOLLANDS K D T. On the secondary instability in inclined air layers[J]. Journal of Fluid Mechanics,1980,96: 481-492.
    [31] RUTH D W, RAITHBY G D, HOLLANDS K D T. On free convection experiments in inclined air layers heated from below[J]. Journal of Fluid Mechanics,1980,96: 461-469.
    [32] DANIELS K E, BRAUSCH O, PESCH W, et al. Competition and bistability of ordered undulations and undulation chaos in inclined layer convection[J]. Journal of Fluid Mechanics,2008,597: 261-282.
    [33] BUSSE F H, CLEVER R M. Three-dimensional convection in an inclined layer heated from below[J]. Journal of Engineering Mathematics,1992,26: 1-19.
  • 加载中
计量
  • 文章访问数:  1471
  • HTML全文浏览量:  305
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-09-18
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回