留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维气液两相漂移模型全隐式AUSMV算法研究

徐朝阳 孟英峰 郭劲松 李皋 邱全锋

徐朝阳, 孟英峰, 郭劲松, 李皋, 邱全锋. 一维气液两相漂移模型全隐式AUSMV算法研究[J]. 应用数学和力学, 2019, 40(4): 386-397. doi: 10.21656/1000-0887.390110
引用本文: 徐朝阳, 孟英峰, 郭劲松, 李皋, 邱全锋. 一维气液两相漂移模型全隐式AUSMV算法研究[J]. 应用数学和力学, 2019, 40(4): 386-397. doi: 10.21656/1000-0887.390110
XU Chaoyang, MENG Yingfeng, GUO Jinsong, LI Gao, QIU Quanfeng. Research on the Implicit AUSMV Algorithm for the 1D Gas-Liquid Two-Phase Drift Flux Model[J]. Applied Mathematics and Mechanics, 2019, 40(4): 386-397. doi: 10.21656/1000-0887.390110
Citation: XU Chaoyang, MENG Yingfeng, GUO Jinsong, LI Gao, QIU Quanfeng. Research on the Implicit AUSMV Algorithm for the 1D Gas-Liquid Two-Phase Drift Flux Model[J]. Applied Mathematics and Mechanics, 2019, 40(4): 386-397. doi: 10.21656/1000-0887.390110

一维气液两相漂移模型全隐式AUSMV算法研究

doi: 10.21656/1000-0887.390110
基金项目: 国家科技重大专项(2016ZX05021004);国家自然科学基金(51674217)
详细信息
    作者简介:

    徐朝阳(1985—),男,工程师,博士(通讯作者. E-mail: 04011xzy@sina.com);孟英峰(1954—),男,教授,博士,博士生导师(E-mail: cwctmyf@vip.sina.com).

  • 中图分类号: O359.1|O241.82

Research on the Implicit AUSMV Algorithm for the 1D Gas-Liquid Two-Phase Drift Flux Model

Funds: The National Science and Technology Major Project of China(2016ZX05021-004);The National Natural Science Foundation of China(51674217)
  • 摘要: 气液两相漂移模型显式AUSMV(advection upstream splitting method combined with flux vector splitting method)算法的时间步长受限于CFL(Courant-Friedrichs-Lewy)条件,为了提高计算效率,建立了一种全隐式AUSMV算法求解气液两相漂移模型.采用AUSM格式结合FVS(flux vector splitting)格式构造连续方程和运动方程的对流项数值通量,AUSM格式构造压力项数值通量.离散控制方程是非线性方程组,采用六阶Newton(牛顿)法结合数值Jacobi矩阵求解.计算经典算例Zuber-Findlay激波管问题和复杂漂移关系变质量流动问题,结果分析表明:全隐式AUSMV算法,色散效应小,无数值震荡,计算精度高.在压力波波速高的条件下,可以显著提高计算效率,耗散效应小.
  • [1] ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer,1965,87(4): 453-468.
    [2] BOUR J A. Wave phenomena and one-dimensional two-phase flow models[J]. Multiphase Science and Technology,1997,9(1): 63-107.
    [3] EVJE S, FLTTEN T. Hybrid flux-splitting schemes for a common two-fluid model[J]. Journal of Computational Physics,2003,192(1): 175-210.
    [4] EVJE S, FLTTEN T. On thewave structure of two-phase flow models[J]. SIAM Journal on Applied Mathematics,2006,67(2): 487-511.
    [5] LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-29.
    [6] KITAMURA K, SHIMA E. Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes[J]. Journal of Computational Physics,2013,245: 62-83.
    [7] CHANG C H, LIOU M S. A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme[J]. Journal of Computational Physics,2008,227(1): 840-873.
    [8] EVJE S, FJELDE K K. Hybrid flux-splitting schemes for a two-phase flow model[J]. Journal of Computational Physics,2002,175(2): 674-701.
    [9] EVJE S, FJELDE K K. On a rough AUSM scheme for a one-dimensional two-phase model[J]. Computers & Fluids,2003,32(10): 1497-1530.
    [10] NIU Y Y, LIN Y C, CHANG C H. A further work on multi-phase two-fluid approach for compressible multi-phase flows[J]. International Journal for Numerical Method in Fluids,2008,58(8): 879-896.
    [11] NIU Y Y. Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD[J]. Journal of Computational Physics,2016,308: 389-410.
    [12] KITAMURA K, NONOMURA T. Simple and robust HLLC extensions of two-fluid AUSM for multiphase flow computations[J]. Computers & Fluids,2014,100: 321-335.
    [13] EVJE S, FLTTEN T. Weaklyimplicit numerical schemes for a two-fluid model[J]. SIAM Journal on Scientific Computing,2005,26(5): 1449-1484.
    [14] EVJE S, FLTTEN T. CFL-violating numerical schemes for a two-fluid model[J]. Journal of Scientific Computing,2006,29(1): 83-114.
    [15] COLONIA S, STEIJL R, BARAKOS G N. Implicit implementation of the AUSM+ and AUSM+-up schemes[J]. International Journal for Numerical Method in Fluids,2014,75(10): 687-712.
    [16] ONUR O, EYI S. Effects of the Jacobian evaluation on Newton’s solution of the Euler equations[J]. International Journal for Numerical Method in Fluids,2005,49(2): 211-231.
    [17] ZENG Q L, AYDERMIR N U, LIEN F S, et al. Comparison of implicit and explicit AUSM-family schemes for compressible multiphase flows[J]. International Journal for Numerical Method in Fluids,2015,77(1): 43-61.
    [18] ZENG Q L, AYDERMIR N U, LIEN F S, et al. Extension of staggered-grid-based AUSM-family schemes for use in nuclear safety analysis codes[J]. International Journal of Multiphase Flow,2017,93:17-32.
    [19] 徐朝阳, 孟英峰, 魏纳, 等. 一维气液两相漂移模型的AUSMV算法研究[J]. 应用数学和力学, 2014,35(12): 1373-1382.(XU Chaoyang, MENG Yingfeng, WEI Na, et al. Research on the AUSMV scheme for 1D gas liquid two phase flow drift flux models[J]. Applied Mathematics and Mechanics,2014,35(12): 1373-1382.(in Chinese))
    [20] MADHU K. Sixth order Newton-type method for solving system of nonlinear equations and its applications[J].Applied Mathematics E: Notes,2017,17: 221-230.
    [21] FLTTEN T, MUNKEJORD S T. The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model[J]. ESAIM: Mathematical Modelling and Numerical Analysis,2006,40(4): 735-764.
  • 加载中
计量
  • 文章访问数:  1802
  • HTML全文浏览量:  356
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-08
  • 修回日期:  2018-05-21
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回