留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有时滞的云杉蚜虫种群模型的Hopf分岔分析

曹建智 谭军 王培光

曹建智, 谭军, 王培光. 一类具有时滞的云杉蚜虫种群模型的Hopf分岔分析[J]. 应用数学和力学, 2019, 40(3): 332-342. doi: 10.21656/1000-0887.390111
引用本文: 曹建智, 谭军, 王培光. 一类具有时滞的云杉蚜虫种群模型的Hopf分岔分析[J]. 应用数学和力学, 2019, 40(3): 332-342. doi: 10.21656/1000-0887.390111
CAO Jianzhi, TAN Jun, WANG Peiguang. Hopf Bifurcation Analysis of a Model for Spruce Budworm Populations With Delays[J]. Applied Mathematics and Mechanics, 2019, 40(3): 332-342. doi: 10.21656/1000-0887.390111
Citation: CAO Jianzhi, TAN Jun, WANG Peiguang. Hopf Bifurcation Analysis of a Model for Spruce Budworm Populations With Delays[J]. Applied Mathematics and Mechanics, 2019, 40(3): 332-342. doi: 10.21656/1000-0887.390111

一类具有时滞的云杉蚜虫种群模型的Hopf分岔分析

doi: 10.21656/1000-0887.390111
基金项目: 国家自然科学基金(11771115);河北省高等学校科学技术研究项目(QN2017018;QN2016030);河北省自然科学基金(A2016201206)
详细信息
    作者简介:

    曹建智(1981—),男,副教授(E-mail: jzcao@hbu.edu.cn);谭军(1991—),男,硕士生(E-mail: zgcqtanjun@163.com);王培光(1963—),男,教授(通讯作者. E-mail: pgwang@hbu.edu.cn).

  • 中图分类号: O175.1

Hopf Bifurcation Analysis of a Model for Spruce Budworm Populations With Delays

Funds: The National Natural Science Foundation of China(11771115)
  • 摘要: 研究了一类具有时滞的云杉蚜虫种群阶段结构模型的动力学行为.首先,讨论了模型正平衡点的存在唯一性,并分析了该平衡点的局部稳定性和出现Hopf分岔的充分条件;其次,利用中心流形定理和正规形理论,讨论了分岔周期解的稳定性及方向;最后,通过数值模拟验证了相关结论的正确性.该文所得结论具有广泛的实际应用价值.
  • [1] FLEMING R A, SHOEMAKER C A. Evaluating models for spruce budworm-forest management: comparing output with regional field data[J]. Ecological Applications: a Publication of the Ecological Society of America,1992,2(4): 460-477.
    [2] MAGNUSSEN S, ALFARO R I, BOUDEWYN P. Survival-time analysis of white spruce during spruce budworm defoliation[J]. Silva Fenncia,2005,39(2): 177-189.
    [3] NIE Z Y, MACLEAN D A, TAYLOR A R. Forest overstory composition and seedling height influence defoliation of understory regeneration by spruce budworm[J]. Forest Ecology and Management,2018,409: 353-360.
    [4] ROYAMA T. Population dynamics of the spruce budworm choristoneura fumiferana[J]. Ecological Monographs,1984,54(4): 429-462.
    [5] MEIGS G W, KENNEDY R E, GRAY A N, et al. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region, USA[J]. Forest Ecology and Management,2015,339: 71-86.
    [6] ALFARO R I, BERG J, AXELSON J. Periodicity of western spruce budworm in Southern British Columbia, Canada[J]. Forest Ecology and Management,2014,315: 72-79.
    [7] NEALIS V G, TURNQUIST R, MORIN B, et al. Baculoviruses in populations of western spruce budworm[J]. Journal of Invertebrate Pathology,2015,127: 76-80.
    [8] 王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究[J]. 应用数学和力学, 2018,39(2): 226-238.(WANG Shuangming, ZHANG Mingjun, FAN Xinman. Spatial dynamics of periodic reaction-diffusion epidemic models with delay and logistic growth[J]. Applied Mathematics and Mechanics,2018,39(2): 226-238.(in Chinese))
    [9] LUDWIG D, JONES D D, HOLLING C S. Qualitative analysis of insect outbreak systems: the spruce budworm forest[J]. Journal of Animal Ecology,1978,47: 315-332.
    [10] LUDWIG D, ARONSON D G, WEINBERGER H F. Spatial patterning of the spruce budworm[J]. Journal of Mathematical Biology,1979,〖STHZ〗 8(3): 217-258.
    [11] RASMUSSEN A, WYLLER J, VIK J O. Relaxation oscillations in spruce-budworm interactions[J]. Nonlinear Analysis: Real World Applications,2011,12(1): 304-319.
    [12] HASSELL D C, ALLWRIGHT D J, FOWLER A C. A mathematical analysis of Jone’s site model for spruce budworm infestation[J]. Journal of Mathematical Biology,1999,38(5): 377-421.
    [13] SINGH M, EASTON A, CUI G, et al. A numerical study of the spruce budworm reaction diffusion equation with hostile boundaries[J]. Natural Resource Modeling,2000,13(4): 535-549.
    [14] VAIDYA N K, WU J H. Modeling spruce budworm population revisited: impact of physiological structure on outbreak control[J]. Bulletin of Mathematical Biology,2008,70(3): 769-784.
    [15] XU X F, WEI J J. Bifurcation analysis of a spruce budworm model with diffusion and physiological structures[J]. Journal of Differential Equations,2017,262(10): 5206-5230.
    [16] 魏俊杰, 王洪滨, 蒋卫华. 时滞微分方程的分支理论及应用[M]. 北京: 科学出版社, 2012.(WEI Junjie, WANG Hongbin, JIANG Weihua. Bifurcation Theory and Application of Delay Differential Equation [M]. Beijing: Science Press, 2012.(in Chinese))
    [17] WAN A Y, ZOU X F. Hopf bifurcation analysis for a model of genetic regulatory system with delay[J]. Journal of Mathematical Analysis and Applications,2009,356(2): 464-476.
  • 加载中
计量
  • 文章访问数:  1221
  • HTML全文浏览量:  179
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-08
  • 修回日期:  2018-12-18
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回