留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非Fourier温度场分布的奇摄动解

包立平 李文彦 吴立群

包立平, 李文彦, 吴立群. 非Fourier温度场分布的奇摄动解[J]. 应用数学和力学, 2019, 40(5): 536-545. doi: 10.21656/1000-0887.390112
引用本文: 包立平, 李文彦, 吴立群. 非Fourier温度场分布的奇摄动解[J]. 应用数学和力学, 2019, 40(5): 536-545. doi: 10.21656/1000-0887.390112
BAO Liping, LI Wenyan, WU Liqun. Singularly Perturbed Solutions of NonFourier Temperature Field Distribution in Single-Layer Materials[J]. Applied Mathematics and Mechanics, 2019, 40(5): 536-545. doi: 10.21656/1000-0887.390112
Citation: BAO Liping, LI Wenyan, WU Liqun. Singularly Perturbed Solutions of NonFourier Temperature Field Distribution in Single-Layer Materials[J]. Applied Mathematics and Mechanics, 2019, 40(5): 536-545. doi: 10.21656/1000-0887.390112

非Fourier温度场分布的奇摄动解

doi: 10.21656/1000-0887.390112
基金项目: 国家自然科学基金(51175134);浙江省重点自然科学基金(LZ15E050004)
详细信息
    作者简介:

    包立平(1962—),男,副教授,博士(通讯作者. E-mail: baolp@hdu.edu.cn);李文彦(1993—),女,硕士生.

  • 中图分类号: TK12

Singularly Perturbed Solutions of NonFourier Temperature Field Distribution in Single-Layer Materials

Funds: The National Natural Science Foundation of China(51175134)
  • 摘要: 应用非Fourier热传导定律构建了单层材料中温度场模型,即一类在无界域上带小参数的奇摄动双曲方程,通过奇摄动展开方法,得到了该问题的渐近解.首先应用奇摄动方法得到了该问题的外解和边界层矫正项,通过对内解和外解的最大模估计和关于时间导数的最大模估计以及线性抛物方程理论,得到了内外解的存在唯一性,从而得到了解的形式渐近展开式.通过余项估计,给出了渐近解的L2估计,得到了渐近解的一致有效性,从而得到了无界域上温度场的分布.通过奇摄动分析,给出了非Fourier 温度场与Fourier 温度场的关系,描述了非Fourier温度场的具体形态.
  • [1] 张浙, 刘登瀛. 非傅里叶热传导研究进展[J]. 力学进展, 2000,30(3): 446-456.(ZHANG Zhe, LIU Dengying. Progress in the research of non-Fourier heat conduction[J]. Advance in Mechanics,2000,30(3): 446-456.(in Chinese))
    [2] 李金娥, 王保林, 常冬梅. 层合材料的非傅里叶热传导及热应力[J]. 固体力学学报, 2011,32(S): 248-253.(LI Jin’e, WANG Baolin, CHANG Dongmei. Non-Fourier heat conduction and thermal stress of laminated materials[J]. Chinese Journal of Solid Mechanics,2011,32(S): 248-253.(in Chinese))
    [3] MAO Y D, XU M T. Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser[J]. Science China Technological Sciences,2015,58(4): 638-649.
    [4] 张丽静, 尚新春. 由激光辐照固体表面引起的非Fourier三维传热问题的解析解[J]. 北京理工大学学报, 2016,36(8): 876-880.(ZHANG Lijing, SHANG Xinchun. Analytical solution of non-Fourier three-dimensional heat transfer problem induced by laser irradiation on solid surface[J]. Transactions of Beijing Institute of Technology,2016,〖STHZ〗 36(8): 876-880.(in Chinese))
    [5] WANG H D. Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory [M]. Berlin: Springer, 2014.
    [6] KUNDU B, LEE K S. Fourier and non-Fourier heat conduction analysis in the absorber plates of a flat-plate solar collector[J]. Solar Energy,2012,86(10): 3030-3039.
    [7] 赵伟涛, 吴九汇. 平板在任意周期表面热扰动作用下的非Fourier热传导的求解与分析[J]. 物理学报, 2013,62(18): 288-296.(ZHAO Weitao, WU Jiuhui. Solution and analysis of non-Fourier heat conduction in a plane slab under arbitrary periodic surface thermal disturbance[J]. Acta Physica Sinica,2013,62(18): 288-296.(in Chinese))
    [8] 王晓燕, 刘洪伟, 李杰, 等. 基于非傅里叶的有限空圆柱体的温度场解析解及其在谐波均匀的圆柱体上的应用[J]. 数学的实践与认识, 2017,〖STHZ〗 47(19): 105-110.(WANG Xiaoyan, LIU Hongwei, LI Jie, et al. Analytical solution of non-Fourier temperature field of finite hollow cylinder and application of harmonic uniform cylinder[J]. Mathematics in Practice and Theory,2017,47(19): 105-110.(in Chinese))
    [9] DONG Y, CAO B Y, GUO Z Y. Temperature innonequilibrium states and non-Fourier heat conduction[J]. Physical Review E,2013,87(3): 32150.
    [10] 张盛, 张洪武, 毕金英, 等. 多维非经典热传导问题的时间-空间多尺度高阶均匀化分析[J]. 复合材料学报, 2009,26(1): 123-133.(ZHANG Sheng, ZHANG Hongwu, BI Jinying, et al. Multi-dimensional nonclassical heat conduction analysis with multiple spatial and temporal scales analysis method[J]. Acta Materiae Compositae Sinica,2009,26(1): 123-133.(in Chinese))
    [11] 康连城. 关于非线性初边值问题的奇摄动[J]. 数学年刊: A辑(中文版), 1989,10(5): 529-531.(KANG Liancheng. Singular perturbation for nonlinear initial boundary value problems[J]. Chinese Annals of Mathematics,1989,10(5): 529-531.(in Chinese))
    [12] 康连城. 关于非线性初边值问题的奇摄动[J]. 应用数学和力学, 1992,13(2): 135-143.(KANG Liancheng. Singular perturbation for nonlinear initial boundary value problems[J]. Applied Mathematics and Mechanics,1992,13(2): 135-143.(in Chinese))
    [13] BERDYSHEV S A, CABADA A, KARIMOV E T. On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator[J]. Nonlinear Analysis,2013,75(6): 3268-3273.
    [14] 关建飞, 沈中华, 许伯强, 等. 板状材料中脉冲激光激发超声导波的数值分析[J]. 光电子·激光, 2005,16(2): 231-235.(GUAN Jianfei, SHEN Zhonghua, XU Boqiang, et al. Numerical analysis of ultrasonic guided waves generated by pulsed laser in plate[J]. Journal of Optoelectronics·Laser,2005,〖STHZ〗 16(2): 231-235.(in Chinese))
    [15] 沈中华, 许伯强, 倪晓武, 等. 单层和双层材料中的脉冲激光超声数值模拟[J]. 中国激光, 2004,〖STHZ〗 31(10): 1275-1280.(SHEN Zhonghua, XU Boqiang, NI Xiaowu, et al. Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials[J]. Chinese Journal of Lasers,2004,31(10): 1275-1280.(in Chinese))
    [16] 伍卓群, 尹景学, 王春明. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.(WU Zhuoqun, YIN Jingxue, WANG Chunming. Introduction to Elliptic and Parabolic Equations [M]. Beijing: Science Press, 2003.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  186
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-11-12
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回