留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正压力梯度粒子近似SPH方法计算大密度比界面流动

徐丞君 徐胜利 刘庆源

徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019, 40(1): 20-35. doi: 10.21656/1000-0887.390126
引用本文: 徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019, 40(1): 20-35. doi: 10.21656/1000-0887.390126
XU Chengjun, XU Shengli, LIU Qingyuan. Modified Particle Approximation to Pressure Gradients in the SPH Algorithm for Interfacial Flows With High Density Ratios[J]. Applied Mathematics and Mechanics, 2019, 40(1): 20-35. doi: 10.21656/1000-0887.390126
Citation: XU Chengjun, XU Shengli, LIU Qingyuan. Modified Particle Approximation to Pressure Gradients in the SPH Algorithm for Interfacial Flows With High Density Ratios[J]. Applied Mathematics and Mechanics, 2019, 40(1): 20-35. doi: 10.21656/1000-0887.390126

修正压力梯度粒子近似SPH方法计算大密度比界面流动

doi: 10.21656/1000-0887.390126
详细信息
    作者简介:

    徐丞君(1991—),男,硕士(E-mail: xucjh@mail.ustc.edu.cn);徐胜利(1965—),男,教授,博士,博士生导师(通讯作者. E-mail: slxu@mail.tsinghua.edu.cn);刘庆源(1990—),男,博士(E-mail: qyliu@ustc.edu.cn).

  • 中图分类号: O242.1

Modified Particle Approximation to Pressure Gradients in the SPH Algorithm for Interfacial Flows With High Density Ratios

  • 摘要: 计算了高密度比的多界面流动问题.为保证多相SPH(smoothed-particle hydrodynamics)方法捕捉界面光滑性和消除界面附近压力震荡,修正了动量方程压强梯度项的粒子近似,在界面施加了排斥力.采用Rayleigh-Taylor界面不稳定性、非Boussinesq锁定交换、溃坝和气泡上升等算例验证了该方法的准确性和健壮性,得到不同时刻界面(粒子)分布、压力云图和指定点压力时间分布、界面锋面距离等.所得结果表明:计算结果(如界面形状、光滑性和指定点压力分布等)与实验值或其他文献结果符合较好.修正的压力梯度项粒子近似,改善了多相SPH方法对高密度比、大变形和破碎多相界面的模拟能力和光滑性,同时界面附近未出现明显的压力震荡.
  • [1] 徐志敏, 宋思远, 辛锋先, 等. 小Reynolds数下粗糙圆管中黏性流场的理论解[J]. 应用数学和力学, 2018,39(2): 123-136.(XU Zhimin, SONG Siyuan, XIN Fengxian, et al. Analytical solution for the viscous flow of small Reynolds numbers in rough pipes[J]. Applied Mathematics and Mechanics,2018,39(2): 123-136.(in Chinese))
    [2] BRACKBILL J, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2): 335-354.
    [3] BALACHANDAR S, EATON J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics,2010,42: 111-133.
    [4] ZHENG Jun, YU Kaiping, WANG Junfeng,et al. SPH for developing super cavity induced by high speed underwater body[J]. Chinese Journal of Computational Physics,2014,31(1): 27-32.
    [5] 上官子柠, 周秀丽, 宋鑫, 等. 典型自由面流动问题的SPH-ALE数值模拟[J].计算物理, 2017,34(6): 641-650.(SHANGGUAN Zining, ZHOU Xiuli, SONG Xin, et al. Numerical simulation of typical free surface flow with SPH-ALE[J]. Chinese Journal of Computational Physics,2017,34(6): 641-650.(in Chinese))
    [6] ESPANOL P, WARREN P. Statistical mechanics of dissipative particle dynamics[J]. Europhysics Letters,1995,30(4): 191-196.
    [7] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
    [8] 韩亚伟, 强洪夫. 改进的物理粘性SPH方法及其在溃坝问题中的应用[J]. 计算物理, 2012,29(5): 693-699.(HAN Yawei, QIANG Hongfu. An improved SPH method with physical viscosity and application in dam-break problem[J]. Chinese Journal of Computational Physics,2012,29(5): 693-699.(in Chinese))
    [9] 王安文, 徐绯, 张岳青. SPH方法在液固撞击数值模拟中的应用[J]. 计算物理, 2012,29(4): 525-533.(WANG Anwen, XU Fei, ZHANG Yueqing. SPH method in numerical simulation of liquid-solid impact[J]. Chinese Journal of Computational Physics,2012,29(4): 525-533.(in Chinese))
    [10] 卞梁, 王肖钧, 章杰, 等. 高速碰撞数值计算中的SPH分区算法[J]. 计算物理, 2011,28(2): 207-212.(BIAN Liang, WANG Xiaojun, ZHANG Jie, et al. Numerical simulation of hypervelocity impact with subdomains in SPH computation[J].Chinese Journal of Computational Physics,2011,28(2): 207-212.(in Chinese))
    [11] COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J].Journal of Computational Physics,2003,191(2): 448-475.
    [12] CHEN Z, ZONG Z, LIU M B, et al. An SPH model for multiphase flows with complex interfaces and large density differences[J]. Journal of Computational Physics,2015,283: 169-188.
    [13] 沈雁鸣, 陈坚强. SPH方法对气液两相流自由界面运动的追踪模拟[J]. 空气动力学学报, 2012,30(2): 157-161, 168.(SHEN Yanming, CHEN Jianqiang. Numerical tracking of interface in multiphase flows with smoothed particle hydrodynamics[J]. Acta Aerodynamica Sinica,2012,30(2): 157-161, 168.(in Chinese))
    [14] MONAGHAN J J. SPH without a tensile instability[J]. Journal of Computational Physics,2000,159(2): 290-311.
    [15] HU X Y, ADAMS N A. An incompressible multi-phase SPH method[J]. Journal of Computational Physics,2007,227(1): 264-278.
    [16] COLAGROSSI A. A meshless Lagrangian method for free-surface and interface flows with fragmentation[D]. PhD Thesis. Rome: University of Rome, 2005
    [17] HOOGERBRRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhys Letter,1992,19(3): 155-160.
    [18] HU X Y, ADAMS N A. A multi-phase SPH method for macroscopic and mesoscopic flows[J]. Journal of Computational Physics,2006,213(2): 844-861.
    [19] MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids,2013,71(5): 537-561.
    [20] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics,1994,110(2): 399-406.
    [21] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering,2010,17(1): 25-76
    [22] EDMOND Y M, SHAO S D. Simulation of near-shore solitary wave mechanics by an incompressible SPH method[J].Applied Ocean Research,2002,24(5): 275-286.
    [23] MONAGHAN J J. Shock simulation by the particle method SPH[J]. Journal of Computational Physics,1983,52(2): 374-389.
    [24] 沈雁鸣. 基于SPH方法的物体入水冲击问题数值模拟研究[D]. 博士学位论文. 绵阳: 中国空气动力研究与发展中心研究生部, 2016: 24-26.(SHEN Yanming. A numerical study of water entry problems based on smoothed particle hydrodynamics (SPH) method[D]. PhD Thesis. Mianyang: The Graduate Faculty of China Aerodynamics Research and Development Center, 2016: 24-26.(in Chinese))
    [25] 陈臻. SPH算法改进及在晃荡与入水中的应用[D]. 硕士学位论文. 大连: 大连理工大学, 2014.(CHEN Zhen.Improving SPH methodology with its application to sloshing and water entry[D]. Master Thesis. Dalian: Dalian University of Technology, 2014.(in Chinese))
    [26] LIU M B, SHAO J R, CHANG J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences,2012,55(1): 244-254.
    [27] CUMMINS S J, RUDMAN M. An SPH projection method[J]. Journal of Computational Physics,1999,152(2): 584-607.
    [28] LEE H G, KIM J. Numerical simulation of the three-dimensional Rayleigh-Taylor instability[J]. Computers and Mathematics With Applications,2013,66(8): 1466-1474.
    [29] GRENIER N, ANTUONO M, COLAGROSSI A, et al. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows[J]. Journal of Computational Physics,2009,228(22): 8380-8393.
    [30] DALZIEL S. Toy models for Rayleigh Taylor instability[C]//8th International Workshop on the Physics of Compressible Turbulent Mixing . Lawrence Livermore National Laboratory: UCRL-MI-146350, 2001.
    [31] BIRMAN V K, MARTIN J E, MEIBURG E. The non-Boussinesq lock-exchange problem, part 2: high-resolution simulations[J]. Journal of Fluid Mechanics,2005,537: 125-144.
    [32] LOWE R J, ROTTMAN J W,LINDEN P F. The non-Boussinesq lock-exchange problem, part 1: theory and experiments[J]. Journal of Fluid Mechanics,2005,537: 101-124.
    [33] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics,1994,114(1): 146-159.
  • 加载中
计量
  • 文章访问数:  1750
  • HTML全文浏览量:  339
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-11-12
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回