[1] |
〖JP3〗OHNO K, TACHIKAWA K, MANZ A. Microfluidics: applications for analytical purposes in chemistry and biochemistry[J]. Electrophoresis,2008,29(22): 4443-4453.
|
[2] |
NANDY K, CHAUDHURI S, GANGULY R. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices[J]. Journal of Magnetism and Magnetic Materials,2008,320(7): 1398-1405.
|
[3] |
SU J, JIAN Y J, CHANG L. Thermally fully developed electroosmotic flow through a rectangular microchannel[J]. International Journal of Heat and Mass Transfer,2012,55(21): 6285-6290.
|
[4] |
杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Dayong, WANG Yang. Effects of ion concentration on electroosmotic flow and micromixing in microchannels[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
|
[5] |
ZHAO G P, JIAN Y J, CHANG L, et al. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field[J]. Journal of Magnetism and Magnetic Materials,2015,387: 111-117.
|
[6] |
JIAN Y J, LIU Q S, YANG L G. AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(21): 1304-1314.
|
[7] |
DONATH E, VOIGT E. Steaming current and streaming potential on structured surfaces[J]. Journal of Colloid and Interface Science,1986,109(1): 122-139.
|
[8] |
STAROV V M, SOLOMENTSEV Y E. Influence of gel layers on electrokinetic phenomena 2: effect of ions interaction with the gel layer[J]. Journal of Colloid and Interface Science,1993,158(1): 166-170.
|
[9] |
MAYNES D, WEBB B W. Fully-developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels[J]. Journal of Heat Transfer,2003,〖STHZ〗 125(5): 889-895.
|
[10] |
〖JP2〗HORIUCHI K, DUTTA P. Joule heating effects in electroosmotically driven microchannel flows[J]. International Journal of Heat and Mass Transfer,2004,47(14/16): 3085-3095.
|
[11] |
NGOMA G D, ERCHIQUI F. Heat flux and slip effects on liquid flow in a microchannel[J]. International Journal of Thermal Sciences,2007,46(11): 1076-1083.
|
[12] |
DEY R, CHAKRABORTY D, CHAKRABORTY S. Extended Graetz problem for combined electroosmotic and pressure-driven flows in narrow confinements with thick electric double layers[J]. International Journal of Heat and Mass Transfer,2012,55(17/18): 4724-4733.
|
[13] |
CHEN G, DAS S. Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization[J]. Journal of Colloid and Interface Science,2015,445: 357-363.
|
[14] |
XIE Y, WANG L, JIN M, et al. Non-linear streaming conductance in a single nanopore by addition of surfactants[J]. Applied Physics Letters,2014,104(3): 033108.
|
[15] |
DAS S, CHAKRABORTY S. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements[J]. Langmuir,2010,26(13): 11589-11596.
|
[16] |
BANDOPADHYAY A, CHAKRABORTY S. Combined effects of interfacial permittivity variations and finite ionic sizes on streaming potentials in nanochannels[J]. Langmuir,2012,28(50): 17552-17563.
|
[17] |
DONATH E, VOIGT A. Streaming current and streaming potential on structured surfaces[J]. Journal of Colloid and Interface Science,1986,109(1): 122-139.
|
[18] |
OHSHIMA H, KONDO T. Electrokinetic flow between two parallel plates with surface charge layers: electro-osmosis and streaming potential[J]. Journal of Colloid and Interface Science,1990,135(2): 443-448.
|
[19] |
KEH H J, LIU Y C. Electrokinetic flow in a circular capillary with a surface charge layer[J]. Journal of Colloid and Interface Science,1995,172(1): 222-229.
|
[20] |
CHANDA S, SINHA S, DAS S. Steaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters[J]. Soft Matter,2014,10(38): 7558-7568.
|
[21] |
CHEN G, DAS S. Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization[J]. Journal of Colloid and Interface Science,2015,445: 357-363.
|
[22] |
〖JP3〗MATIN M H, OHSHIMA H. Combined electroosmotically and pressure driven flow in soft nanofluidics[J].Journal of Colloid and Interface Science,2015,460: 361-369.
|
[23] |
MATIN M H, OHSHIMA H. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics[J]. Journal of Colloid and Interface Science,2016,476: 167-176.
|
[24] |
刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率[J]. 物理学报, 2016,65(8): 084704.(LIU Yongbo, JIAN Yongjun. Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube[J]. Acta Physica Sinica,2016,65(8): 084704.(in Chinese))
|