[1] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354: 56-58.
|
[2] |
ERINGEN A C, KIM B S. Stress concentration at the tip of the crack[J]. Mechanics Research Communications,1974,1(4): 233-237.
|
[3] |
TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes[J]. Nature,1996,381: 678-680.
|
[4] |
ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics,1983,54(9): 4703-4710.
|
[5] |
ERINGEN A C, EDELEN D G B. On nonlocal elasticity[J]. International Journal of Engineering Science,1972,10(3): 233-248.
|
[6] |
杨武, 彭旭龙, 李显方. 锥形纳米管纵向振动固有频率[J]. 振动与冲击, 2014,33(2): 158-162.(YANG Wu, PENG Xulong, LI Xianfang. Natural frequencies of longitudinal vibration of cone-shaped nanotubes[J]. Journal of Vibration and Shock,2014,33(2): 158-162.(in Chinese))
|
[7] |
黄伟国, 李成, 朱忠奎. 基于非局部理论的压杆稳定性及轴向振动研究[J]. 振动与冲击, 2013,32(5): 154-156.(HUANG Weiguo, LI Cheng, ZHU Zhongkui. On the stability and axial vibration of compressive bars based on nonlocal elasticity theory[J]. Journal of Vibration and Shock, 2013,32(5): 154-156.(in Chinese))
|
[8] |
LI C, LI S, YAO L Q. Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models[J]. Applied Mathematical Modelling,2015,39(15): 4570-4585.
|
[9] |
NARENDAR S, GOPALAKRISHNAN S. Nonlocal scale effects on ultrasonic wave characteristics of nanorods[J]. Physica E: Low-Dimensional Systems and Nanostructures,2010,42(5): 1601-1604.
|
[10] |
PANG M, ZHANG Y Q, CHEN W Q. Transverse wave propagation in viscoelastic single-walled carbon nanotubes with small scale and surface effects[J]. Journal of Applied Physics, 2015,117(2): 024305.
|
[11] |
WANG L F, HU H Y. Flexural wave propagation in single-walled carbon nanotubes[J]. Journal of Computational & Theoretical Nanoscience,2008,5(4): 581-586.
|
[12] |
王碧蓉, 邓子辰, 徐晓建. 基于梯度理论的碳纳米管弯曲波传播规律的研究[J]. 西北工业大学学报, 2013,31(5): 774-778.(WANG Birong, DENG Zichen, XU Xiaojian. Modified Timoshenko beam models for flexural wave dispersion in carbon nanotubes with shear deformation considered[J]. Journal of Northwestern Polytechnical University,2013,31(5): 774-778.(in Chinese))
|
[13] |
张宇, 邓子辰, 赵鹏. 辛体系下碳纳米管阵列中太赫兹波传播特性研究[J]. 应用数学和力学, 2016,37(9): 889-900.(ZHANG Yu, DENG Zichen, ZHAO Peng. Study of terahertz wave propagation in carbon nanotube arrays based on the symplectic formulation[J]. Applied Mathematics and Mechanics,2016,37(9): 889-900.(in Chinese))
|
[14] |
尹春松, 杨洋. 考虑非局部剪切效应的碳纳米管弯曲特性研究[J]. 应用数学和力学, 2015,36(6): 600-606.(YIN Chunsong, YANG Yang. Shear deformable bending of carbon nanotubes based on a new analytical nonlocal Timoshenko beam model[J]. Applied Mathematics and Mechanics,2015,36(6): 600-606.(in Chinese))
|
[15] |
徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 10-17.(XU Xiaojian, DENG Zichen. Surface effects of adsorption-induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 10-17.(in Chinese))
|
[16] |
LI C, LIU J J, CHENG M, et al. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces[J]. Composites Part B: Engineering,2017,116: 153-169.
|
[17] |
LI C. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams[J]. Mechanics Based Design of Structures & Machines,2017,45(4): 463-478.
|
[18] |
SHEN J P, LI C, FAN X L, et al. Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects[J]. Smart Structures and Systems,2017,19(1): 105-113.
|
[19] |
LIU J J, LI C, FAN X, et al. Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory[J]. Applied Mathematical Modelling,2017,45: 65-84.
|
[20] |
LIU J J, LI C, YANG C J, et al. Dynamical responses and stabilities of axially moving nanoscale beams with time-dependent velocity using a nonlocal stress gradient theory[J]. Journal of Vibration and Control,2017,23(20): 3327-3344.
|
[21] |
KARAMI B, SHAHSAVARI D, LI L. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory[J]. Physica E: Low-Dimensional Systems and Nanostructures,2018,97: 317-327.
|
[22] |
EL-BORGI S, RAJENDRAN P, FRISWELL M I, et al. Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory[J]. Composite Structures,2018,186: 274-292.
|
[23] |
XU M, FUTABA D N, YAMADA T, et al. Carbon nanotubes with temperature-invariant viscoelasticity from -196 ℃ to 1 000 ℃[J].Science, 2010,330(6009):1364-1368.
|
[24] |
XU M, FUTABA D N, YUMURA M, et al. Tailoring temperature invariant viscoelasticity of carbon nanotube material[J]. Nano Letters,2011,11(8): 3279-3284.
|
[25] |
杨挺青. 黏弹性理论与应用[M]. 北京: 科学出版社, 2004.(YANG Tingqing. Viscoelastic Theory and Application [M]. Beijing: Science Press, 2004.(in Chinese))
|
[26] |
谢官模. 振动力学[M]. 北京: 国防工业出版社, 2007.(XIE Guanmo. Vibration Mechanics [M]. Beijing: National Defense Industry Press, 2007.(in Chinese))
|
[27] |
|