[1] |
RICE O C. Mathematical analysis of random noise[J].Bell System Technology,1944,23(3): 282-332.
|
[2] |
RICE O C. Mathematical analysis of random noise[J].Bell System Technology,1945,24(3): 46-156.
|
[3] |
ROBERTS J B. First passage probability for nonlinear oscillators[J]. Journal of Engineering Mechanics,1976,102: 851-866.
|
[4] |
SPENCER B F, BERGMAN L A. On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems[J].Nonlinear Dynamics,1993,4(4): 357-372.
|
[5] |
WEI L, WEI X. Stochastic optimal control of first-passage failure for coupled Duffing-van der Pol system under Gaussian white noise excitations[J]. Chaos, Solitons & Fractal,2005,25(5): 1221-1228.
|
[6] |
WEI L, WEI X. First passage problem for strong nonlinear stochastic dynamical system[J]. Chaos, Solitons & Fractal,2006,28(2): 414-421.
|
[7] |
PRADLWARTERH J, SCHUELLER G I. Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation[J]. Probability Engineering Mechanics,2009,14(3): 213-227.
|
[8] |
PROPPE C, PRADLWARTER H J, SCHUELLER G. Equivalent linearization and Monte Carlo simulation in stochastic dynamics[J]. Probability Engineering Mechanics,2003,18(1): 1-15.
|
[9] |
JUU O, HIROAKI T. Importance sampling for stochastic systems under stationary noise having a specified power spectrum[J]. Probability Engineering Mechanics,2009, 24(4): 537-544.
|
[10] |
NEWTON N J. Variance reduction for simulate diffusions[J]. SIAM Journal on Applied Mathematics,1994,54(6): 1780-1805.
|
[11] |
AU K L, BECK J L. First excursion probability for linear systems by very efficient importancesampling[J]. Probability Engineering Mechanics,2001,16(3): 193-207.
|
[12] |
KA-VENG Y, LAMBROS S K. An efficient simulation method for reliability analysis of linear dynamical systems using simple additive rules of probability[J]. Probability Engineering Mechanics,2005,20(1): 109-114.
|
[13] |
LAMBROS K, SAIHUNG H. Domain decomposition method for calculating the failure probability of linear dynamic systems subjected to Gaussian stochastic loads[J]. Journal of Engineering Mechanics,2006,20: 475-486.
|
[14] |
何军. 非平稳随机激励下系统首次穿越概率的近似解法[J]. 应用数学和力学, 2009,30(2): 245-252.(HE Jun. Approximation for the first passage probability of systems under non-stationary random excitation[J]. Applied Mathematics and Mechanics,2009, 30(2): 245-252.(in Chinese))
|
[15] |
ZUEV K M, KATAFYGIOTIS L S. The horseracing simulation algorithm for evaluation of small failure probabilities[J]. Probability Engineering Mechanics,2011,26(2): 157-164.
|
[16] |
VALDEBENITO M A, JENSEN H A, LABARCA A A. Estimation of first excursion probabilities for uncertain stochastic linear systems subject to Gaussian load[J]. Computers and Structures,2014,138: 36-48.
|
[17] |
WANG J, KATAFYGIOTIS L S, FENG Z Q. An efficient simulation method for the first excursion problem of linear structures subjected to stochastic wind loads[J]. Computers & Structures,2016,166: 75-84.
|
[18] |
PRADLWARTER H J, SCHUELLER G J. Excursion probabilities of non-linear systems[J]. International Journal of Non-Linear Mechanics,2004,39(9): 1447-1452.
|
[19] |
HE J, GONG J H. Estimate of small first passage probabilities of nonlinear random vibration systems by using tail approximation of extreme distributions[J].Structural Safety,2016,60: 28-36.
|
[20] |
OLSEN I A, NAESS A. An importance sampling procedure for estimating failure probabilities of non-linear dynamic systems subjected to random noise[J]. International Journal of Non-Linear Mechanics,2007,42(6): 848-853.
|
[21] |
任丽梅, 徐伟, 肖玉柱, 等. 基于重要样本法的结构力学系统的首次穿越[J]. 力学学报, 2012,44(3): 648-652.(REN Limei, XU Wei, XIAO Yuzhu, et al. First excursion probabilities of dynamical systems by importance sampling[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(3): 648-652.(in Chinese))
|
[22] |
KOO H, KIUREGHIAN A D, FUJIMURA K. Design-point excitation for non-linear random vibrations[J]. Probabilistic Engineering Mechanics,2005,20(2): 136-147.
|
[23] |
AU S K. Critical excitation of sdof elasto-plastic systems[J]. Journal of Sound and Vibration,2006,296(4/5): 714-733.
|
[24] |
VALDEBENITO M A, PRADLWARTER H J. The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities[J]. Structural Safety,2010,32(2): 101-111.
|
[25] |
TAKEWAKI I. Critical excitation for elastic-plastic structures via statistical equivalent linearization[J].Probability Engineering Mechanics,2002,17(1): 73-84.
|
[26] |
SOONG T T, GRIGORIU M.Random Vibration of Mechancial and Structural Systems [M]. Englewood Cliffs, NJ: Prentice-Hall Inc,1997.
|
[27] |
OKSENDAL B. Stochastic Differential Equations: an Introduction With Application [M]. Berlin: Springer, 1998.
|