[1] |
BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems[J]. The Mathmatics Student,1994,63: 123-145.
|
[2] |
BIANCHI M, HADJISAVVAS N, SCHAIBLE S. Vector equilibrium problems with generalized monotone bifunctions[J].Journal of Optimization Theory and Applications,1997,92(3): 527-542.
|
[3] |
ANSARI Q H, OETTLI W, SCHLAGER D. A generalization of vectorial equilibria[J]. Mathematical Methods of Operations Research,1997,46(2): 147-152.
|
[4] |
〖JP2〗LONG X J, HUANG N J, TEO K L. Existence and stability of solutions for generalized strong vector quasi-equilibrium problem[J]. Mathematical and Computer Modelling,2008,47(3/4): 445-451.
|
[5] |
GONG X H. Continuity of the solution set to parametric weak vector equilibrium problems[J]. Journal of Optimization Theory and Applications,2008,139(1): 35-46.
|
[6] |
GONG X H, YAO J C. Lower semicontinuity of the set of efficient solutions for generalized systems[J]. Journal of Optimization Theory and Applications,2008,138(2): 197-205.
|
[7] |
ANH L Q, KHANH P Q. Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks ii: lower semicontinuities applications[J]. Set-Valued Analysis,2008,16(7/8): 943-960.
|
[8] |
ANH L Q, KHANH P Q. Continuity of solution maps of parametric quasiequilibrium problems[J]. Journal of Global Optimization,2010,46(2): 247-259.
|
[9] |
KIMURA K, YAO J C. Semicontinuity of solution mappings of parametric generalized vector equilibrium problems[J]. Journal of Optimization Theory and Applications,2008,138(3): 429-443.
|
[10] |
KIMURA K, YAO J C. Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems[J]. Journal of Global Optimization,2008,41(2): 187-202.
|
[11] |
曾静, 彭再云, 张石生. 广义强向量拟平衡问题解的存在性和Hadamard适定性[J]. 应用数学和力学, 2015,36(6): 651-658.(ZENG Jing, PENG Zaiyun, ZHANG Shisheng. Existence and Hadamard well-posedness of solutions to generalized strong vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics,2015,36(6): 651-658.(in Chinese))
|
[12] |
PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization,2018,70(1): 55-69.
|
[13] |
PENG Z Y, WANG X F, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis,2019,27(1): 103-118.
|
[14] |
LI S J, CHEN C R. Stability of weak vector variational inequality[J]. Nonlinear Analysis: Theory, Methods & Applications,2009,70(4): 1528-1535.
|
[15] |
CHEN C R, LI S J. Semicontinuity of the solution set map to a set-valued weak vector variational inequality[J]. Journal of Industrial and Management Optimization,2007,3(3): 519-528.
|
[16] |
CHEN C R, LI S J, FANG Z M. On the solution semicontinuity to a parametric generalized vector quasi- variational inequality[J]. Computers & Mathematics With Applications,2010,60(8): 2417-2425.
|
[17] |
ZHONG R Y, HUANG N J. Lower semicontinuity for parametric weak vector variational inequalities in reflexive Banach spaces[J]. Journal of Optimization Theory and Applications,2011,149(3): 564-579.
|
[18] |
ANH L Q, HUNG N V. Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems[J]. Journal of Industrial & Management Optimization,2018,14(1): 65-79.
|
[19] |
ZHONG R Y, HUANG N J. On the stability of solution mapping for parametric generalized vector quasiequilibrium problems[J]. Computers & Mathematics With Applications,2012,63(4): 807-815.
|
[20] |
AUBIN J P, EKELAND I. Applied Nonlinear Analysis [M]. New York: John Wiley and Sons, 1984.
|
[21] |
BERGE C. Topological Spaces [M]. London: Oliver and Boyd, 1963.
|
[22] |
Gerstewitz C. Nichtkonvexe dualitat in der vektaroptimierung[J]. Wissenschafliche Zeitschift der Technischen Hochschule Leuna-Mensehung,1983,25: 357-364.
|
[23] |
LUC D T. Theory of Vector Optimization, Lecture Notes in Economic and Mathematical Systems [M]. Berlin: Springer-Verlag, 1989.
|