留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度梁在热-机械荷载作用下的几何非线性分析

王雪 赵伟东

王雪, 赵伟东. 功能梯度梁在热-机械荷载作用下的几何非线性分析[J]. 应用数学和力学, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201
引用本文: 王雪, 赵伟东. 功能梯度梁在热-机械荷载作用下的几何非线性分析[J]. 应用数学和力学, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201
WANG Xue, ZHAO Weidong. Geometrically Nonlinear Analysis of Functionally Graded Beams Under Thermomechanical Loading[J]. Applied Mathematics and Mechanics, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201
Citation: WANG Xue, ZHAO Weidong. Geometrically Nonlinear Analysis of Functionally Graded Beams Under Thermomechanical Loading[J]. Applied Mathematics and Mechanics, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201

功能梯度梁在热-机械荷载作用下的几何非线性分析

doi: 10.21656/1000-0887.390201
基金项目: 教育部春晖计划(Z2015057)
详细信息
    作者简介:

    王雪(1985—),女,讲师,硕士(E-mail: 745721810@qq.com);赵伟东(1972—),男,副教授,硕士,硕士生导师(通讯作者. E-mail: zhwd.xbl@163.com) .

  • 中图分类号: TU43

Geometrically Nonlinear Analysis of Functionally Graded Beams Under Thermomechanical Loading

  • 摘要: 基于经典梁理论,运用虚功原理和变分法推导了均匀变温场与横向均布荷载联合作用的功能梯度梁的几何非线性控制方程.考虑端部不可移夹紧边界条件,运用打靶法求解了该两点边值问题.当横向均布荷载为0时,考察了功能梯度梁的热屈曲临界升温和屈曲平衡路径.当均匀变温与横向均布荷载都不为0时,考察了功能梯度梁的荷载挠度曲线.数值结果表明:随材料体积分数指数增加,梁的有量纲热屈曲临界升温显著减小,后屈曲变形显著增加;变温对功能梯度梁的荷载挠度曲线影响非常显著.发现了功能梯度梁的双稳态构形及其转换现象,梁的最终平衡位形不但与变温及荷载参数有关,还与加载历程有关.
  • [1] KOIZUMI M. FGM activities in Japan[J]. Composites Part B: Engineering,1997,28(1/2): 1-4.
    [2] 李永, 宋健, 张志民. 梯度功能力学[M]. 北京: 清华大学出版社, 2003.(LI Yong, SONG Jian, ZHANG Zhimin. Gradient Functional Mechanic s[M]. Beijing: Tsinghua University Press, 2003.(in Chinese))
    [3] MA L S, WANG T J. Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory[J]. International Journal of Solids and Structure,2004,41(1): 85-101.
    [4] REDDY J N, WANG C M, KITIPORNCHAI S. Axisymmetric bending of functionally graded circular and annular plates[J]. European Journal of Mechanics: A/Solids,1999,18(2): 185-199.
    [5] MOITA J S, ARAJO A L, MOTA SOARES C M, et al. Material and geometric nonlinear analysis of functionally graded plate-shell type structures[J]. Applied Composite Materials,2016,23(4): 537-554.
    [6] 胡超, 郑日恒, 孙旭峰, 等. 梯度材料平板弯拉耦合力学的精确化支配方程[J]. 应用数学和力学, 2016,37(7): 756-765.(HU Chao, ZHENG Riheng, SUN Xufeng, et al. Refined equations for functionally graded material plates under bending-tension coupling[J]. Applied Mathematics and Mechanics,2016,37(7): 756-765.(in Chinese))
    [7] 张莹, 梅靖, 陈鼎, 等. 功能梯度圆板和环板受周边力作用的弹性力学解[J]. 应用数学和力学, 2018,39(5): 538-547.(ZHANG Ying, MEI Jing, CHEN Ding, et al. Elasticity solutions for functionally graded circular and annular plates subjected to boundary forces and moments[J]. Applied Mathematics and Mechanics,2018,〖STHZ〗 39(5): 538-547.(in Chinese))
    [8] SHEN H S. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments[J]. International Journal of Mechanical Sciences,2002,44(3): 561-584.
    [9] SANKAR B V, TZENG J T. Thermal stresses in functionally graded beams[J]. AIAA Journal,2002,40(6): 1228-1232.
    [10] 仲政, 于涛. 功能梯度悬臂梁弯曲问题的解析解[J]. 同济大学学报(自然科学版), 2006,34(3): 443-447.(ZHONG Zheng, YU Tao. Analytical bending solution of functionally graded cantilever-beam[J]. Journal of Tongji University(Natural Science),2006,34(3): 443-447.(in Chinese))
    [11] KADOLI R, AKHTAR K, GANESAN N. Static analysis of functionally graded beams using higher order shear deformation theory[J]. Applied Mathematical Modelling,2008,32(12): 2509-2525.
    [12] 李世荣, 张靖华, 赵永刚. 功能梯度材料Timoshenko梁的热过屈曲分析[J]. 应用数学和力学, 2006,27(6): 709-715.(LI Shirong, ZHANG Jinghua, ZHAO Yonggang. Thermal post-buckling of functionally graded material Timoshenko beams[J]. Applied Mathematics and Mechanics,2006,27(6): 709-715.(in Chinese))
    [13] LIBRESCU L, OH S Y, SONG O. Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability[J]. Journal of Thermal Stresses,2005,28(6/7): 649-712.
    [14] 钟万勰. 应用力学对偶体系[M]. 北京: 科学出版社, 2002.(ZHONG Wan-xie. Duality System of Applied Mechanics [M]. Beijing: Science Press, 2002.(in Chinese))
    [15] 牛牧华, 马连生. 基于物理中面FGM梁的非线性力学行为[J]. 工程力学, 2011,28(6): 219-225.(NIU Muhua, MA Liansheng. Nonlinear mechanical behaviors of FGM beams based on the physical neutral surface[J]. Engineering Mechanics,2011,28(6): 219-225.(in Chinese))
    [16] LIEW K M, YANG J, KITIPORNCHAI S. Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading[J]. International Journal of Solids and Structures,2003,40(15): 3869-3892.
    [17] 沈惠申. 功能梯度复合材料板壳结构的弯曲、屈曲和振动[J]. 力学进展, 2004,34(1): 53-60.(SHEN Huishen. Bending, buckling and vibration of functionally graded plates[J]. Advances in Mechanics,2004,34(1): 53-60.(in Chinese))
    [18] 赵伟东, 高士武, 马宏伟. 扁球壳在热-机械荷载作用下的稳定性分析[J]. 应用数学和力学, 2017,38(10): 1146-1154.(ZHAO Weidong, GAO Shiwu, MA Hongwei. Thermomechanical stability analysis of shallow spherical shells[J]. Applied Mathematics and Mechanics,2017,38(10): 1146-1154.(in Chinese))
    [19] BICH D H, VAN TUNG H. Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects[J]. International Journal of Non-Linear Mechanics,2011,46(9): 1195-1204.
    [20] 朱媛媛, 胡育佳, 程昌钧. Euler型梁-柱结构的非线性稳定性和后屈曲分析[J]. 应用数学和力学, 2011,32(6): 674-682.(ZHU Yuanyuan, HU Yujia, CHENG Changjun. Analysis of nonlinear stability and post-buckling for Euler-type beam-column structure[J]. Applied Mathematics and Mechanics,2011,32(6): 674-682.(in Chinese))
    [21] 周承倜. 弹性稳定理论[M]. 成都: 四川人民出版社, 1981.(ZHOU Chengti. Elastic Stability Theory [M]. Chengdu: Sichuan People’s Publishing House, 1981.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  203
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-18
  • 修回日期:  2018-10-03
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回