留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆-轨道垂向耦合系统求解过程的改进算法

刘章军 何承高 张传勇

刘章军, 何承高, 张传勇. 车辆-轨道垂向耦合系统求解过程的改进算法[J]. 应用数学和力学, 2019, 40(6): 641-649. doi: 10.21656/1000-0887.390202
引用本文: 刘章军, 何承高, 张传勇. 车辆-轨道垂向耦合系统求解过程的改进算法[J]. 应用数学和力学, 2019, 40(6): 641-649. doi: 10.21656/1000-0887.390202
LIU Zhangjun, HE Chenggao, ZHANG Chuanyong. An Improved Algorithm for Solving Dynamic Responses of Vehicle-Track Vertically Coupled Systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 641-649. doi: 10.21656/1000-0887.390202
Citation: LIU Zhangjun, HE Chenggao, ZHANG Chuanyong. An Improved Algorithm for Solving Dynamic Responses of Vehicle-Track Vertically Coupled Systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 641-649. doi: 10.21656/1000-0887.390202

车辆-轨道垂向耦合系统求解过程的改进算法

doi: 10.21656/1000-0887.390202
基金项目: 国家自然科学基金(51778343;51278282)
详细信息
    作者简介:

    刘章军(1973—),男,教授,博士,博士生导师(通讯作者. E-mail: liuzhangjun@ctgu.edu.cn).

  • 中图分类号: U213

An Improved Algorithm for Solving Dynamic Responses of Vehicle-Track Vertically Coupled Systems

Funds: The National Natural Science Foundation of China(51778343;51278282)
  • 摘要: 考虑到轨道结构长度随系统响应持时的增加而增长,提出了一种改进的车辆轨道垂向耦合系统的动力响应求解算法.该算法事先选定某一定长度的轨道结构,并获得该轨道结构的质量矩阵、阻尼矩阵和刚度矩阵;通过在求解过程中不断地对车辆子系统定位,判断是否需要对车辆子系统的位置和轨道结构的响应矩阵进行调整,以此来达到仅增加系统响应持时而不增加轨道结构长度的目的.算例表明:该改进加快算法是精确、高效的,不仅可以真实地模拟车辆在轨道上的前进运行状态,而且可以保证轨道子系统的轨道单元数量不随系统响应持时的增加而增长,这为快速求解车辆轨道垂向耦合系统提供了一种有效的计算方法.
  • [1] 徐磊, 翟婉明. 轨道结构随机场模型与车辆-轨道耦合随机动力分析[J]. 应用数学和力学, 2017,38(1): 67-74.(XU Lei, ZHAI Wanming. The random field model for track structures and vehicle-track coupled stochastic dynamic analysis[J]. Applied Mathematics and Mechanics,2017,38(1): 67-74.(in Chinese))
    [2] 张斌, 罗雁云, 雷晓燕. 改进迭代过程的车轨耦合振动数值解法及应用[J]. 工程力学, 2016,33(3): 128-134.(ZHANG Bin, LUO Yanyun, LEI Xiaoyan. Numerical approach for vehicle-track coupling vibration based on improved iterative process and its application[J]. Engineering Mechanics,2016,33(3): 128-134.(in Chinese))
    [3] YANG F, FONDER G A. An iterative solution method for dynamic response of bridge-vehicles systems[J]. Earthquake Engineering & Structural Dynamics,1996,25(2): 195-215.
    [4] 娄平, 曾庆元. 移动荷载作用下板式轨道的有限元分析[J]. 交通运输工程学报, 2004,4(1): 29-33.(LOU Ping, ZENG Qingyuan. Finite element analysis of slab track subjected to moving load[J]. Journal of Traffic and Transportation Engineering,2004,4(1): 29-33.(in Chinese))
    [5] JO J S, JUNG H J, KIM H J. Finite element analysis of vehicle-bridge interaction by an iterative method[J].Structural Engineering and Mechanics,2008,30(2): 165-176.
    [6] 雷晓燕, 张斌, 刘庆杰. 列车-轨道系统竖向动力分析的车辆轨道单元模型[J]. 振动与冲击, 2010,29(3): 168-173.(LEI Xiaoyan, ZHANG Bin, LIU Qingjie. Model of vehicle and track elements for vertical dynamic analysis of vehicle-track system[J]. Journal of Vibration and Shock,2010,29(3): 168-173.(in Chinese))
    [7] ZHANG J, GAO Q, TAN S J, et al. A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact[J]. Journal of Sound and Vibration,2012,331(21): 4763-4773.
    [8] SUN W, ZHOU J, THOMPSON D, et al. Vertical random vibration analysis of vehicle-track coupled system using Green’s function method[J]. Vehicle System Dynamics,2014,52(3): 362-389.
    [9] 吴神花, 雷晓燕. 交叉迭代算法求解车辆-轨道非线性耦合方程的收敛性讨论[J]. 华东交通大学学报, 2015,32(3): 23-31.(WU Shenhua, LEI Xiaoyan. Convergence condition of cross iterative algorithm for vehicle-track nonlinear coupling equations[J]. Journal of East China Jiaotong University,2015,32(3): 23-31.(in Chinese))
    [10] 孙宇, 翟婉明. 基于格林函数法的车辆-轨道垂向耦合动力学分析[J]. 工程力学, 2017,34(3): 219-226.(SUN Yu, ZHAI Wanming. Analysis of the vehicle-track vertical coupled dynamics based on the Green’s function method[J]. Engineering Mechanics,2017,34(3): 219-226.(in Chinese))
    [11] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.(ZHAI Wanming. Vehicle-Track Coupling Dynamics [M]. Beijing: Science Press, 2015.(in Chinese))
    [12] 刘章军, 方兴. 平稳地震动过程的随机函数-谱表示模拟[J]. 振动与冲击, 2013,32(24): 6-10.(LIU Zhangjun, FANG Xing. Simulation of stationary ground motion with random functions and spectral representation[J]. Journal of Vibration and Shock,2013,32(24): 6-10.(in Chinese))
    [13] LIU Z J, LIU W, PENG Y B. Random function based spectral representation of stationary and non-stationary stochastic processes[J]. Probabilistic Engineering Mechanics,2016,45: 115-126.
    [14] 刘章军, 张传勇, 齐东春. 高速列车乘坐舒适度评价的概率密度演化方法[J]. 振动与冲击, 2018,37(14): 149-155.(LIU Zhangjun, ZHANG Chuanyong, QI Dongchun. Probability density evolution method for the ride comfort evaluation of high speed trains[J]. Journal of Vibration and Shock,2018,37(14): 149-155.(in Chinese))
    [15] 雷晓燕. 高速铁路轨道动力学: 模型、算法与应用[M]. 北京: 科学出版社, 2015.(LEI Xiaoyan. High Speed Railway Track Dynamics: Model, Algorithm and Application [M]. Beijing: Science Press, 2015.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1263
  • HTML全文浏览量:  172
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-21
  • 修回日期:  2018-09-16
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回