留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

统计能量分析中参数不确定性分析

肖艳平 宋海洋 叶献辉

肖艳平, 宋海洋, 叶献辉. 统计能量分析中参数不确定性分析[J]. 应用数学和力学, 2019, 40(4): 443-451. doi: 10.21656/1000-0887.390216
引用本文: 肖艳平, 宋海洋, 叶献辉. 统计能量分析中参数不确定性分析[J]. 应用数学和力学, 2019, 40(4): 443-451. doi: 10.21656/1000-0887.390216
XIAO Yanping, SONG Haiyang, YE Xianhui. Parameter Uncertainty in Statistical Energy Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(4): 443-451. doi: 10.21656/1000-0887.390216
Citation: XIAO Yanping, SONG Haiyang, YE Xianhui. Parameter Uncertainty in Statistical Energy Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(4): 443-451. doi: 10.21656/1000-0887.390216

统计能量分析中参数不确定性分析

doi: 10.21656/1000-0887.390216
基金项目: 国家自然科学基金(51606180;11872060)
详细信息
    作者简介:

    肖艳平(1980—),女,副教授,博士(通讯作者. E-mail: xiaoyp6688@sina.com).

  • 中图分类号: TB533;O32

Parameter Uncertainty in Statistical Energy Analysis

Funds: The National Natural Science Foundation of China(51606180;11872060)
  • 摘要: 统计能量分析方法是计算结构高频振动噪声的有效方法之一,内损耗因子和耦合损耗因子是其中重要的参数但不易测量,测量误差通常比较大,导致计算得到的子系统振动能量和真实值之间存在偏差.为解决上述问题,该文采用了4种不同的区间分析方法:区间矩阵摄动法、基于区间变量特性法、仿射算法和仿射逆矩阵法,从理论上计算了统计能量分析子系统的振动能量区间,该区间结果充分考虑了内损耗因子和耦合损耗因子的测量误差对计算结果的影响,对传统的统计能量分析理论进行了完善.然后,通过算例比较了每种方法所求子系统总能量区间的优劣.
  • [1] LYON R H. Statistical Energy Analysis for Designers, Part I: Basic Theory [M]. The MIT Press, 1974.
    [2] LYON R H, DAVIES H G. Statistical Energy Analysis for Designers, Part II: The Engineering Application [M]. The MIT Press, 1974.
    [3] 马力, 杨金水. 新型轻质复合材料夹芯结构振动阻尼性能研究进展[J]. 应用数学和力学, 2017,38(4): 369-398.(MA Li, YANG Jinshui. Progresses in the study on vibration damping properties of novel lightweight composite sandwich structures[J]. Applied Mathematics and Mechanics,2017,38(4): 369-398.(in Chinese))
    [4] 张春岩, 沈火明, 王瑞乾, 等. 阻尼层对泡沫铝芯三明治板隔声特性的影响分析[J]. 应用数学和力学, 2014,35(S): 191-194.(ZHANG Chunyan, SHEN Huoming, WANG Ruiqian, et al. Experimental and numerical study of the damping layer’s influence on sound transmission loss in aluminum foam sandwich panels[J]. Applied Mathematics and Mechanics,2014,35(S): 191-194.(in Chinese))
    [5] QIU Z P, ELISHAKOFF I, STARNES J J H. The bound set of possible eigenvalues of structures with uncertain but non-random parameters[J]. Chaos, Solitons & Fractals,1996,7(11): 1845-1857.
    [6] QIU Z P, ELISHAKOFF I. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis[J]. Computer Methods in Applied Mechanics and Engineering,1998,152(3/4): 361-372.
    [7] QIU Z P, CHEN S H, SONG D T. The displacement bound estimation for structures with an interval description of uncertain parameters[J]. Communications in Numerical Methods in Engineering,1996,12(1): 1-11.
    [8] 郭书祥, 吕震宙. 区间运算和静力区间有限元[J]. 应用数学和力学, 2001,22(12): 1249-1254.(GUO Shuxiang, L Zhenzhou. Interval arithmetic and static interval finite element method[J]. Applied Mathematics and Mechanics,2001,22(12): 1249-1254.(in Chinese))
    [9] COMBA J L D, STOLFI J. Affine arithmetic and its applications to computer graphics[C]// Proceedings of VI SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing) . Recife, Brazil, 1993: 9-18.
    [10] MANSON G. Calculating frequency response functions for uncertain systems using complex affine analysis[J].Journal of Sound and Vibration,2005,288(3): 487-521.
    [11] DEGRAUWE D, LOMBAERT G, DE ROECK G. Improving interval analysis in finite element calculations by means of affine arithmetic[J]. Computers and Structures,2010,88(3/4): 247-254.
    [12] STAUDT P B, CARDOZO N S M, SOARES R D. Phase stability analysis using a modified affine arithmetic[J]. Computers and Chemical Engineering,2013,53: 190-200.
    [13] 宋海洋, 张文正, 张丰收, 等. 基于区间摄动法的不确定结构高频动响应预示[J]. 噪声与振动控制, 2018,38(1): 26-31.(SONG Haiyang, ZHANG Wenzheng, ZHANG Fengshou, et al. High-frequency response prediction of uncertainty structures based on interval perturbation approach[J]. Noise and Vibration Control,2018,38(1): 26-31.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  162
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 修回日期:  2018-10-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回