留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

约束Hamilton系统的Lie对称性及其在场论中的应用

周景润 傅景礼

周景润, 傅景礼. 约束Hamilton系统的Lie对称性及其在场论中的应用[J]. 应用数学和力学, 2019, 40(7): 810-822. doi: 10.21656/1000-0887.390218
引用本文: 周景润, 傅景礼. 约束Hamilton系统的Lie对称性及其在场论中的应用[J]. 应用数学和力学, 2019, 40(7): 810-822. doi: 10.21656/1000-0887.390218
ZHOU Jingrun, FU Jingli. Lie Symmetry of Constrained Hamiltonian Systems and Its Application in Field Theory[J]. Applied Mathematics and Mechanics, 2019, 40(7): 810-822. doi: 10.21656/1000-0887.390218
Citation: ZHOU Jingrun, FU Jingli. Lie Symmetry of Constrained Hamiltonian Systems and Its Application in Field Theory[J]. Applied Mathematics and Mechanics, 2019, 40(7): 810-822. doi: 10.21656/1000-0887.390218

约束Hamilton系统的Lie对称性及其在场论中的应用

doi: 10.21656/1000-0887.390218
基金项目: 国家自然科学基金(11272287;11872335;11472247);浙江省科技创新团队(2013TD18)
详细信息
    作者简介:

    周景润(1988—),男,硕士(E-mail: 869569521@qq.com);傅景礼(1955—),男,教授,博士,博士生导师(通讯作者. E-mail: sqfujingli@163.com).

  • 中图分类号: O302;O34;O369

Lie Symmetry of Constrained Hamiltonian Systems and Its Application in Field Theory

Funds: The National Natural Science Foundation of China(11272287;11872335;11472247)
  • 摘要: 研究了约束Hamilton系统的Lie对称性,得到了场论系统的守恒量.首先给出约束Hamilton系统的正则运动方程和固有约束方程;其次构建了约束Hamilton 系统的Lie对称性确定方程和结构方程;然后给出了约束Hamilton系统的Lie守恒定理和守恒量;最后研究了复标量场与Chern-Simons项耦合系统的Lie对称性和另外一个例子以说明此方法在场论中的应用.
  • [1] XUE Y, ZHANG Y. Lie symmetries of constrained Hamiltonian systems with constraints of the second kind[J]. Acta Physica Sinica,2001,50(5): 816-819.
    [2] LUO S K. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian canonical equations for a singular system[J]. Acta Physica Sinica,2004,53(1): 5-10.
    [3] 张素英, 邓子辰. 用投影方法求耗散广义Hamilton约束系统的李群积分[J]. 应用数学和力学, 2004,〖STHZ〗 25(4): 385-390.(ZHANG Suying, DENG Zichen. Lie group integration for constrained generalized Hamiltonian system with dissipation by projection method[J]. Applied Mathematics and Mechanics,2004,〖STHZ〗 25(4): 385-390.(in Chinese))
    [4] DU M L, DELOS J B. Effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field[J]. Physical Review Letters,1987,58(17): 1731-1733.
    [5] 王永龙, 赵德玉. 约束Hamilton系统对称性及应用[M]. 山东: 山东人民出版社, 2012.(WANG Yonglong, ZHAO Deyu. The Symmetry of Constrained Hamilton System and Its Application [M]. Shandong: Shandong People’s Publishing House, 2012.(in Chinese))
    [6] TINKHAM M. Group Theory and Quantum Mechanics [M]. New York: McGraw-Hill, 1964.
    [7] BISWAS T. Symmetry breaking of gauge theories via internal space dynamics[J]. Journal of High Energy Physics,2002,2(1): 135-146.
    [8] LUTZKY M. Dynamical symmetries and conserved quantities[J]. Journal of Physics A: Mathematical and General,1979,12(7): 973-981.
    [9] 韩广才, 张耀良. 一类广义力学系统的能量方程[J]. 哈尔滨工程大学学报, 2001,22(4): 69-71.(HAN Guangcai, ZHANG Yaoliang. Energy equation of generalized mechanical system[J]. Journal of Harbin Engineering University,2001,22(4): 69-71.(in Chinese))
    [10] LIU R. Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems[J]. Science in China(Series A),1991,34(4): 37-47.
    [11] BLUMAN G W, KUMEI S. Symmetries and Differential Equations [M]. Berlin: Springer, 1989.
    [12] MACCALLUM M. Differential Equations: Their Solution Using Symmetries [M]. Cambridge: Cambridge University Press, 1989.
    [13] OVSIANNIKOV L V. Group Analysis of Differential Equations [M]. New York: Academic Press, 1982.
    [14] GORRINGE V M, LEACH P G L. Lie point symmetries for systems of second order linear ordinary differential equations[J]. Quaestiones Mathematicae,1988,〖STHZ〗 11(1): 95-117.
    [15] CHEH J, OLVER P J, POHJANPELTO J. Algorithms for differential invariants of symmetry groups of differential equations[J]. Foundations of Computational Mathematics,2008,8: 501-532.
    [16] OLVER P J, POHJANPELTO J. Moving frames for Lie pseudo-groups[J]. Canadian Journal of Mathematics,2008,60: 1336-1386.
    [17] MEI J Q, WANG H Y. The generating set of the differential invariant algebra and Maurer-Cartan equations of a (2+1)-dimensional Burgers equation[J]. Journal of Systems Science and Complexity,2013,26(2): 281-290.
    [18] BEFFA G. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces[J]. Proceedings of the American Mathematical Society,2006,134(3): 779-791.
    [19] OLVER P J, POHJANPELTO J. Differential invariant algebras of Lie pseudo-groups[J]. Advances in Mathematics,2009,222(5): 1746-1792.
    [20] LISLE G I, REID G J. Symmetry classification using noncommutative invariant differential operators[J]. Foundations of Computational Mathematics,2006,6(3): 353-386.
    [21] FU J L, CHEN B Y, CHEN L Q. Noether symmetries of discrete nonholonomic dynamical systems[J]. Physics Letters A,2009,373(4): 409-412.
    [22] 傅景礼, 陈立群, 陈本永. 非规范格子离散非保守系统的Noether理论[J]. 中国科学(G辑), 2009,39(9): 1320-1329.(FU Jingli, CHEN Liqun, CHEN Benyong. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J]. Scientia Sinica(Series G),2009,39(9): 1320-1329.(in Chinese))
    [23] 傅景礼, 陈立群, 陈本永. 非规范格子离散机电耦合动力系统的Noether理论[J]. 中国科学(G辑), 2010,40(2): 133-145.(FU Jingli, CHEN Liqun, CHEN Benyong. Noether-type theorem for discrete electromechanical coupling systems with nonregular lattices[J]. Scientia Sinica(Series G), 2010,40(2): 133-145.(in Chinese))
    [24] 赵跃宇. 非保守力学系统的Lie对称性和守恒量[J]. 力学学报, 1994,26(3): 380-384.(ZHAO Yueyu. Lie symmetries and conserved quantities of non-conservative mechanical system[J]. Acta Mechanica Sinica,1994,26(3): 380-384.(in Chinese))
    [25] 梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999.(in Chinese))
    [26] MEI F X. Lie symmetries and conserved quantities of constrained mechanical systems[J]. Acta Mechanica,2000,141: 135-148.
    [27] ZHANG H B. Lie symmetries and conserved quantities of non-holonomic mechanical systems with unilateral Vacco constraints[J]. Chinese Physics,2002,11(1): 1-4.
    [28] 周景润, 傅景礼. 约束Hamilton系统的积分因子及其守恒量[J]. 力学季刊, 2018,39(3): 554-561.(ZHOU Jingrun, FU Jingli. The integrating factor and conservation quantity for constrained Hamilton system[J]. Chinese Quarterly of Mechanics,2018,39(3): 554-561.(in Chinese))
    [29] OLVER P J. Applications of Lie Group to Differential Equations [M]. Berlin: Springer, 2000.
    [30] OLVER P J. Equivalence, Invariants and Symmetry [M]. Cambridge: Cambridge University Press, 1995.
    [31] 梅凤翔, 吴润衡, 张永发. 非Чет〖KG-*4〗аев型非完整系统的Lie对称性与守恒量[J]. 力学学报, 1988,30(4): 468-474.(MEI Fengxiang, WU Runheng, ZHANG Yongfa. Lie symmetries and conserved quantities of nonholonomic systems of non-Chetaev’s type[J]. Acta Mechanica Sinica,1988,30(4): 468-474.(in Chinese))
    [32] ZHAO Y Y, MEI F X. On symmetry and invariant of dynamical systems[J]. Advances in Mechanics,1993,23(3): 360-372.
    [33] 梅凤翔. 非完整系统力学基础[M]. 北京: 北京工业学院出版社, 1985.(MEI Fengxiang. Nonholonomic Mechanics Foundation [M]. Beijing: Beijing Institute of Technology Press, 1985.(in Chinese))
    [34] XIANG Pei, GUO Yongxin, FU Jingli. Time and space fractional Schrdinger equation with fractional factor[J]. Communications in Theoretical Physics,2019,71(1): 16-26.
    [35] 梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京: 北京理工大学出版社, 2004.(MEI Fengxiang. Symmetry and Conserved Quantity of Constrained Mechanical System [M]. Beijing: Beijing Institute of Technology Press, 2004.(in Chinese))
    [36] CHEN X W, LIU C, MEI F X, et al. Conformal invariance and Hojman conserved quantities of first order Lagrange systems[J]. Chinese Physics B,2008,50(9): 3180-3184.
    [37] FU J L, CHEN B Y, FU H, et al. Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems[J]. Science China: Physics, Mechanics and Astronomy,2011,54(2): 288-295.
    [38] FU J L, LI X W, LI C R, et al. Symmetries and exact solutions of discrete nonconservative systems[J]. Science China: Physics, Mechanics and Astronomy,2010,53(9): 1699-1706.
    [39] FENG K, QIN M Z. Symplectic Geometric Algorithms for Hamiltonian System [M]. New York: Springer, 2009.
    [40] 刘荣万, 傅景礼. 非完整非保守力学系统在相空间的Lie对称性与守恒量[J]. 应用数学和力学, 1999,20(6): 597-601.(LIU Rongwan, FU Jingli. Lie symmetries and conserved quantities of nonconservative nonholonomic system in phase space[J]. Applied Mathematics and Mechanics,1999,20(6): 597-601.(in Chinese))
    [41] 乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理[J]. 物理学报, 2002,51(8): 1661-1665.(QIAO Yongfen, ZHANG Yaoliang, ZHAO Shuhong. Integrating factors and conservation laws for the Raitzins canonical equations of motion of non-conservative dynamical systems[J]. Acta Physica Sinca,2002,51(8): 1661-1665.(in Chinese))
    [42] 傅景礼, 刘荣万. 准坐标下非完整力学系统的Lie对称性和守恒量[J]. 数学物理学报, 2000,20(1): 63-69.(FU Jingli, LIU Rongwan. Lie symmetries and conserver quantities of nonholonomic mechanical systems in terms of quasi-coordinates[J]. Acta Mathematica Scientia, 2000,20(1): 63-69.(in Chinese))
    [43] 郑明亮. 机械多体系统动力学非线性最优控制问题的Noether理论[J]. 应用数学和力学, 2018,〖STHZ〗 39(7): 776-784.(ZHENG Mingliang. The Noether theorem for nonlinear optimal control problems of mechanical multibody system dynamics[J]. Applied Mathematics and Mechanics,2018,〖STHZ〗 39(7): 776-784.(in Chinese))
    [44] 崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017,38(12): 1331-1341.(CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J]. Applied Mathematics and Mechanics,2017,38(12): 1331-1341.(in Chinese))
    [45] 李子平. 约束哈密顿系统及其对称性质[M]. 北京: 北京工业大学出版社, 1999.(LI Ziping. Constrained Hamiltonian Systems and Their Symmetric Properties [M]. Beijing: Beijing University of Technology Press, 1999.(in Chinese))
    [46] 周景润, 傅景礼. 约束Hamilton系统的积分因子和守恒量及其在场论中的应用[J]. 数学物理学报, 2019,39(1): 38-48.(ZHOU Jingrun, FU Jingli. Integrating factors and conserved quantities for constrained Hamilton systems and its applications in field theory[J]. Acta Mathematica Scientia,2019,39(1): 38-48.(in Chinese))
    [47] LI Z P. Symmetry in field theory for singular Lagrangian with derivatives of higher order[J]. Acta Mathematica Scientia,1994,14(S1): 30-39.
    [48] LI Z P. The symmetry transformation of the constrained system with high-order derivatives[J]. Acta Mathematica Scientia,1985,5(4): 379-388.
    [49] ZHANG R L, LIU J D, TANG Y F, et al. Canonicalization and symplectic simulation of gyrocenter dynamics in time-independent magnetic fields[J]. Physics of Plasmas,2014,21(3): 2445-2458
    [50] TANG Y F. Formal energy of a symplectic scheme for Hamiltonian systems and its applications[J]. Computers and Mathematics With Applications,1994,27(7): 31-39.
    [51] ZHNAG R L,TANG Y F, ZHU B B, et al. Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems[J]. Science China Mathematics,2016,59(2): 1-18.
  • 加载中
计量
  • 文章访问数:  1384
  • HTML全文浏览量:  280
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 修回日期:  2018-09-07
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回