留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴对称弹性动力学问题的重构核插值法

陈莘莘 曾佳伟

陈莘莘, 曾佳伟. 轴对称弹性动力学问题的重构核插值法[J]. 应用数学和力学, 2019, 40(8): 938-944. doi: 10.21656/1000-0887.390242
引用本文: 陈莘莘, 曾佳伟. 轴对称弹性动力学问题的重构核插值法[J]. 应用数学和力学, 2019, 40(8): 938-944. doi: 10.21656/1000-0887.390242
CHEN Shenshen, ZENG Jiawei. A Reproducing Kernel Interpolation Method for Axisymmetric Elastodynamic Problems[J]. Applied Mathematics and Mechanics, 2019, 40(8): 938-944. doi: 10.21656/1000-0887.390242
Citation: CHEN Shenshen, ZENG Jiawei. A Reproducing Kernel Interpolation Method for Axisymmetric Elastodynamic Problems[J]. Applied Mathematics and Mechanics, 2019, 40(8): 938-944. doi: 10.21656/1000-0887.390242

轴对称弹性动力学问题的重构核插值法

doi: 10.21656/1000-0887.390242
基金项目: 国家自然科学基金(11462006;11772129)
详细信息
    作者简介:

    陈莘莘(1975—),男,教授,博士(通讯作者. E-mail: chenshenshen@tsinghua.org.cn).

  • 中图分类号: O241;O343

A Reproducing Kernel Interpolation Method for Axisymmetric Elastodynamic Problems

Funds: The National Natural Science Foundation of China(11462006;11772129)
  • 摘要: 重构核插值法是近年来提出的一种新型无网格方法.该方法的形函数具有点插值性和高阶光滑性,不仅能够直接施加本质边界条件,而且能保证较高的计算精度.为了更有效地求解三维轴对称弹性动力学问题,对重构核插值法(reproducing kernel interpolation method, RKIM)应用于此类问题进行了研究,并发展了相应的数值模拟方法.由于几何形状和边界条件的轴对称性,计算时只需要横截面上离散节点的信息,因而前处理变得简单.采用Newmark-β法进行了时域积分.数值算例表明,轴对称弹性动力学分析的重构核插值法既有无网格方法的优势,又有较高的计算精度.
  • [1] LI X L, LI S L. A meshless projection iterative method for nonlinear Signorini problems using the moving Kriging interpolation[J]. Engineering Analysis With Boundary Elements,2019,98: 243-252.
    [2] 杨建军, 郑健龙. 无网格局部强弱法求解不规则域问题[J]. 力学学报, 2017,49(3): 659-666.(YANG Jianjun, ZHENG Jianlong. Meshless local strong-weak (MLSW) method for irregular domain problems[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(3): 659-666.(in Chinese))
    [3] 肖毅华, 张浩锋, 平学成. 无网格对称粒子法中两类热边界条件的处理[J]. 华东交通大学学报, 2014,31(4): 65-70.(XIAO Yihua, ZHANG Haofeng, PING Xuecheng. Treatment of two kinds of thermal boundary conditions in meshless symmetric particle method[J]. Journal of East China Jiaotong University,2014,31(4): 65-70.(in Chinese))
    [4] FU Z J, XI Q, CHEN W, et al. A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations[J]. Computers and Mathematics With Applications,2018,76(4): 760-773.
    [5] LI M, DOU F F, KORAKIANITIS T, et al. Boundary node Petrov-Galerkin method in solid structures[J]. Computational and Applied Mathematics,2018,37(1): 135-159.
    [6] 王峰, 周宜红, 郑保敬, 等. 基于滑动Kriging插值的MLPG法求解结构非耦合热应力问题[J]. 应用数学和力学, 2016,37(11): 1217-1227.(WANG Feng, ZHOU Yihong, ZHENG Baojing, et al. A meshless local Petrov-Galerkin method based on the moving Kriging interpolation for structural uncoupled thermal stress analysis[J]. Applied Mathematics and Mechanics,2016,37(11): 1217-1227.(in Chinese))
    [7] 孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xinzhi, LI Xiaolin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
    [8] LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Engineering,1995,20(8/9): 1081-1106.
    [9] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 275-389.
    [10] CHEN J S, HAN W, YOU Y, et al. A reproducing kernel method with nodal interpolation property[J]. International Journal for Numerical Methods in Engineering,2003,56(7): 935-960.
    [11] 李中华, 秦义校, 崔小朝. 弹性力学的插值型重构核粒子法[J]. 物理学报, 2012,61(8): 25-31.(LI Zhonghua, QIN Yixiao, CUI Xiaochao. Interpolating reproducing kernel particle method for elastic mechanics[J]. Acta Physica Sinica,2012,61(8): 25-31.(in Chinese))
    [12] 韩治, 杨海天, 王斌. 无网格伽辽金法求解轴对称问题[J]. 工程力学, 2005,22(5): 64-68.(HAN Zhi, YANG Haitian, WANG Bin. Solving axisymmetric problems via EFGM[J]. Engineering Mechanics, 2005,22(5): 64-68.(in Chinese))
    [13] 陈建桥, 梁元博, 丁亮. 无网格局部Petrov-Galerkin法求解轴对称问题[J]. 华中科技大学学报(城市科学版), 2007,24(4): 9-12.(CHEN Jianqiao, LIANG Yuanbo, DING Liang. Numerical analysis of axisymmetric problems by MLPG[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition),2007,24(4): 9-12.(in Chinese))
    [14] 陈莘莘, 李庆华, 刘永胜. 轴对称动力学问题的无网格自然邻接点Petrov-Galerkin法[J]. 振动与冲击, 2015,34(3): 61-65.(CHEN Shenshen, LI Qinghua, LIU Yongsheng. Meshless natural neighbour Petrov-Galerkin method for axisymmetric dynamic problems[J]. Journal of Vibration and Shock,2015,34(3): 61-65.(in Chinese))
    [15] 姜清辉, 周创兵, 漆祖芳. 基于Newmark积分方案的DDA方法[J]. 岩石力学与工程学报, 2009,28(1): 2778-2783.(JIANG Qinghui, ZHOU Chuangbing, QI Zufang. Discontinuous deformation analysis method based on Newmark integration algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(1): 2778-2783.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  192
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-13
  • 修回日期:  2018-11-15
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回